Publications

Results 951–1000 of 99,299

Search results

Jump to search filters

From ionic clusters dynamics to network constraints in ionic polymer solutions

Physical Review E

Grest, Gary S.; Wijesinghe, Sidath; Kosgallana, Chathurika; Senanayake, Manjula; Mohottalalage, Supun S.; Zolnierczuk, Piotr; Stingaciu, Laura; Perahia, Dvora

Physical networks formed by ionizable polymers with ionic clusters as crosslinks are controlled by coupled dynamics that transcend from ionic clusters through chain motion to macroscopic response. Here, the coupled dynamics, across length scales, from the ionic clusters to the networks in toluene swollen polystyrene sulfonate networks, were directly correlated, as the electrostatic environment of the physical crosslinks was altered. The multiscale insight is attained by coupling neutron spin echo measurements with molecular dynamics simulations, carried out to times typical of relaxation of polymers in solutions. The experimental dynamic structure factor is in outstanding agreement with the one calculated from computer simulations, as the networks are perturbed by elevating the temperature and changing the electrostatic environment. In toluene, the long-lived clusters remain stable over hundreds of ns across a broad temperature range, while the polymer network remains dynamic. Though the size of the clusters changes as the dielectric constant of the solvent is modified through the addition of ethanol, they remain stable but morph, enhancing the polymer chain dynamics.

More Details

An Engineered Laccase from Fomitiporia mediterranea Accelerates Lignocellulose Degradation

Biomolecules

Pham, Thanh L.; Deng, Kai; Choudhary, Hemant; Sale, Kenneth L.; Northen, Trent R.; Singer, Steven W.; Adams, Paul D.; Simmons, Blake A.

Laccases from white-rot fungi catalyze lignin depolymerization, a critical first step to upgrading lignin to valuable biodiesel fuels and chemicals. In this study, a wildtype laccase from the basidiomycete Fomitiporia mediterranea (Fom_lac) and a variant engineered to have a carbohydrate-binding module (Fom_CBM) were studied for their ability to catalyze cleavage of β-O-4′ ether and C–C bonds in phenolic and non-phenolic lignin dimers using a nanostructure-initiator mass spectrometry-based assay. Fom_lac and Fom_CBM catalyze β-O-4′ ether and C–C bond breaking, with higher activity under acidic conditions (pH < 6). The potential of Fom_lac and Fom_CBM to enhance saccharification yields from untreated and ionic liquid pretreated pine was also investigated. Adding Fom_CBM to mixtures of cellulases and hemicellulases improved sugar yields by 140% on untreated pine and 32% on cholinium lysinate pretreated pine when compared to the inclusion of Fom_lac to the same mixtures. Adding either Fom_lac or Fom_CBM to mixtures of cellulases and hemicellulases effectively accelerates enzymatic hydrolysis, demonstrating its potential applications for lignocellulose valorization. We postulate that additional increases in sugar yields for the Fom_CBM enzyme mixtures were due to Fom_CBM being brought more proximal to lignin through binding to either cellulose or lignin itself.

More Details

Parasitic Modulation of Microwave Signals by a Hypersonic Plasma Layer

IEEE Transactions on Plasma Science

Roberds, Nicholas A.; Young, Matthew W.; Miller, Nathan E.; Logemann, Caleb; Statom, Tony K.; Wagnild, Ross M.

During hypersonic flight, compressional and viscous heating of the air can form a plasma layer which encases the aircraft. If the boundary layer becomes turbulent, then the electron density fluctuations can effect a parasitic modulation in microwave signals transmitted through the plasma. We developed an approach for studying the interaction of microwave signals with a turbulent, hypersonic plasma layer. The approach affords a great deal of flexibility in both the plasma layer model and the antenna configuration. We then analyzed a situation in which microwaves, transmitted from a rectangular aperture antenna, propagate through a turbulent plasma layer to a distant receiver. We characterized the first- and second-order statistics of the computed parasitic modulation and quantified the depolarization of the signal. The amplitude fluctuations are lognormally distributed at low frequencies and Rice-distributed at high frequencies. Fluctuations in the copolarized phase and amplitude of the far-field signal are strongly anticorrelated. We used a multioutput Gaussian process (MOGP) to model these quantities. The efficacy of the MOGP model is demonstrated by recovering the time evolution of the copolarized phase given the copolarized amplitude and occasional measurements of the phase.

More Details

Transducer Resolution Effect on Pressure Fluctuations Beneath Hypersonic Turbulent Boundary Layers

AIAA Journal

Huang, Junji; Duan, Lian; Casper, Katya M.; Wagnild, Ross M.; Bitter, Neal P.

The size of a pressure transducer is known to affect the accuracy of measurements of wall-pressure fluctuations beneath a turbulent boundary layer because of spatial averaging over the sensing area of the transducer. In this paper, the effect of finite transducer size is investigated by applying spatial averaging or wavenumber filters to a database of hypersonic wall pressure generated from a direct numerical simulation (DNS) that simulates the turbulent portion of the boundary layer over a sharp 7° half-angle cone at nominally Mach 8. A good comparison between the DNS and the experiment in the Sandia Hypersonic Wind Tunnel at Mach 8 is achieved after spatial averaging is applied to the DNS data over an area similar to the sensing area of the transducer. The study shows that a finite sensor size similar to that of the PCB132 transducer can cause significant attenuation in the root-mean-square and power spectral density (PSD) of wall-pressure fluctuations, and the attenuation effect is identical between cone and flat plate configurations at the same friction Reynolds number. The Corcos theory is found to successfully compensate for the attenuated highfrequency components of the wall-pressure PSD.

More Details

Inelastic relaxation processes in amorphous sodium silicates

Journal of the American Ceramic Society

Rimsza, Jessica; Jones, Reese E.

During fracture amorphous oxides exhibit irreversible processes, including inelastic and nonrecoverable relaxation effects in the process zone surrounding the crack tip. Here, classical molecular dynamics simulations were used with a reactive forcefield to evaluate inelastic relaxation processes in five amorphous sodium silicate compositions. Overall, the 20% Na2O-SiO2(NS20) composition exhibited the most inelastic relaxation, followed by the 15% Na2O-SiO2(NS15) composition, the 25% Na2O-SiO2(NS25) composition, and finally the 10% (NS10) and 30% (NS30) Na2O-SiO2 compositions. Coordination analysis of the Na+ ions identified that during inelastic relaxation the Na+ ions were increasingly coordinated by nonbridging oxygens (NBOs) for the NS10 and NS15 compositions, which was supported by radial analysis of the O-Na-O bond angles surrounding the crack tip. Across the sodium silicate compositional range, two different inelastic relaxation mechanism were identified based on the amount of bridging oxygens (BOs) and NBOs in the Na+ ion coordination shell. At lower (NS10) and higher (NS30) sodium compositions, the entire structured relaxed toward the crack tip. In contrast at intermediate sodium concentrations (NS20) the Na+ ion migrates toward the crack tip separately from the network structure. By developing a fundamental understanding of how modified silica systems respond to static stress fields, we will be able to predict how varying amorphous silicate systems exhibit slow crack growth.

More Details

Ground Heat Flux Reconstruction Using Bayesian Uncertainty Quantification Machinery and Surrogate Modeling

Earth and Space Science

Zhou, Wenbo; Zhang, Liujing; Sheshukov, Aleksey; Wang, Jingfeng; Zhu, Modi; Sargsyan, Khachik; Xu, Donghui; Liu, Desheng; Zhang, Tianqi; Mazepa, Valeriy; Sokolov, Alexandr; Valdayskikh, Victor; Ivanov, Valeriy

Ground heat flux (G0) is a key component of the land-surface energy balance of high-latitude regions. Despite its crucial role in controlling permafrost degradation due to global warming, G0 is sparsely measured and not well represented in the outputs of global scale model simulation. In this study, an analytical heat transfer model is tested to reconstruct G0 across seasons using soil temperature series from field measurements, Global Climate Model, and climate reanalysis outputs. The probability density functions of ground heat flux and of model parameters are inferred using available G0 data (measured or modeled) for snow-free period as a reference. When observed G0 is not available, a numerical model is applied using estimates of surface heat flux (dependent on parameters) as the top boundary condition. These estimates (and thus the corresponding parameters) are verified by comparing the distributions of simulated and measured soil temperature at several depths. Aided by state-of-the-art uncertainty quantification methods, the developed G0 reconstruction approach provides novel means for assessing the probabilistic structure of the ground heat flux for regional permafrost change studies.

More Details

Summary of the Brine Availability Test in Salt (BATS), Including Extended Plan for Experiments at the Waste Isolation Pilot Plant (WIPP)

Kuhlman, Kristopher L.; Mills, Melissa M.; Choens II, Robert C.; Herrick, Courtney G.; Otto, Shawn; Davis, Jon; Stauffer, Philip H.; Wu, Yuxin

This document lays out a set of near-future investigations in salt, the third phase of BATS (BATS 3). This phase is planned to answer the few remaining issues from the first two phases of BATS (BATS 1 and BATS 2), and to prepare for a subsequent large-scale demonstration phase. The BATS experiments are the first part of a larger plan to conduct field experiments to answer specific technical questions, improve the technical basis for disposal of heat-generating radioactive waste in salt (Stauffer et al., 2015; SNL et al., 2020), and demonstrate readiness for disposal of radioactive waste in salt, including large, hot waste packages.

More Details
Results 951–1000 of 99,299
Results 951–1000 of 99,299