Publications

8 Results

Search results

Jump to search filters

Parasitic Modulation of Microwave Signals by a Hypersonic Plasma Layer

IEEE Transactions on Plasma Science

Roberds, Nicholas R.; Young, Matthew W.; Miller, Nathan M.; Logemann, Caleb L.; Statom, Tony S.; Wagnild, Ross M.

During hypersonic flight, compressional and viscous heating of the air can form a plasma layer which encases the aircraft. If the boundary layer becomes turbulent, then the electron density fluctuations can effect a parasitic modulation in microwave signals transmitted through the plasma. We developed an approach for studying the interaction of microwave signals with a turbulent, hypersonic plasma layer. The approach affords a great deal of flexibility in both the plasma layer model and the antenna configuration. We then analyzed a situation in which microwaves, transmitted from a rectangular aperture antenna, propagate through a turbulent plasma layer to a distant receiver. We characterized the first- and second-order statistics of the computed parasitic modulation and quantified the depolarization of the signal. The amplitude fluctuations are lognormally distributed at low frequencies and Rice-distributed at high frequencies. Fluctuations in the copolarized phase and amplitude of the far-field signal are strongly anticorrelated. We used a multioutput Gaussian process (MOGP) to model these quantities. The efficacy of the MOGP model is demonstrated by recovering the time evolution of the copolarized phase given the copolarized amplitude and occasional measurements of the phase.

More Details

Nonmagnetized collisional plasma parameter estimation from two frequency signal interrogation attenuation

IEEE Transactions on Plasma Science

Statom, Tony S.

A nonmagnetized collisional plasma parameter estimator from two frequency signal interrogation attenuation is developed. The plasma parameters that are estimated are the plasma frequency, electron neutral momentum collision frequency, and the plasma thickness. The plasma frequency and electron neutral momentum collision frequency are considered uniform across the plasma thickness. The relative permittivity is defined, and the complex index of refraction is developed. Using this definition and applying the plasma frequency, electron neutral momentum collision frequency, the radial propagation frequency, and plasma thickness, an attenuation is determined for known cases. The development of the estimator is discussed. The estimator uses a performance index where the minimum difference between the plasma frequencies and electron neutral momentum collision frequencies is determined for the two signal interrogation frequencies under the constraint of the same plasma thickness. The estimator was developed in three stages which include iterative, sequential, and adaptive. The setups of the iterative, sequential, and adaptive approaches are discussed. The impact of the interrogation frequency and the estimator setup is investigated. The estimator in the three development stages is compared with known cases and the plasma parameter estimator performance is quantified.

More Details

Plasma Parameters from Reentry Signal Attenuation

IEEE Transactions on Plasma Science

Statom, Tony S.

This paper presents the application of a theoretically developed method that provides plasma parameter solution space information from measured RF attenuation that occurs during reentry. The purpose is to provide reentry plasma parameter information from the communication signal attenuation. The theoretical development centers around the attenuation and the complex index of refraction. The methodology uses an imaginary index of the refraction matching algorithm with a tolerance to find suitable solutions that satisfy the theory. The imaginary matching terms are then used to determine the real index of refraction resulting in the complex index of refraction. Then a filter is used to reject nonphysical solutions. Signal attenuation-based plasma parameter properties investigated include the complex index of refraction, plasma frequency, electron density, collision frequency, propagation constant, attenuation constant, phase constant, complex plasma conductivity, and electron mobility. RF plasma thickness attenuation is investigated and compared to the literature. Similar plasma thickness for a specific signal attenuation can have different plasma properties.

More Details

Pulsed discharge irradiance reaction identification

IEEE Transactions on Plasma Science

Statom, Tony S.

This paper presents the application of a theoretically developed method, which when applied to a pulsed irradiance signal can provide information about the underlying chemical kinetics and reaction dynamics. The theoretical development uses a combination of state-space, Laplace transform, least-square, and correlation techniques to determine chemical kinetic and reaction dynamic terms from a pulsed discharge. The waveform irradiance signals come from a space-based optical radiometer. Four pulsed radiometry irradiance waveforms are examined where the reaction order, rate constant, and reaction rates are investigated. The application of the theory and the commensurate results demonstrate that irradiance signals obtained under similar circumstances come from distinct pulsed discharge conditions. © 1973-2012 IEEE.

More Details
8 Results
8 Results