Publications

Results 81501–81600 of 96,771

Search results

Jump to search filters

Geologic technical assessment of the Stratton Ridge salt dome, Texas, for potential expansion of the U.S. strategic petroleum reserve

Lord, Anna S.; Rautman, Christopher A.

The Stratton Ridge salt dome is a large salt diapir located only some ten miles from the currently active Strategic Petroleum Reserve Site at Bryan Mound, Texas. The dome is approximately 15 miles south-southwest of Houston. The Stratton Ridge salt dome has been intensively developed, in the desirable central portions, with caverns for both brine production and product storage. This geologic technical assessment indicates that the Stratton Ridge salt dome may be considered a viable, if less-than-desirable, candidate site for potential expansion of the Strategic Petroleum Reserve (SPR). Past development of underground caverns significantly limits the potential options for use by the SPR. The current conceptual design layout of proposed caverns for such an expansion facility is based upon a decades-old model of salt geometry, and it is unacceptable, according to this reinterpretation of salt dome geology. The easternmost set of conceptual caverns are located within a 300-ft buffer zone of a very major boundary shear zone, fault, or other structural feature of indeterminate origin. This structure transects the salt stock and subdivides it into an shallow western part and a deeper eastern part. In places, the distance from this structural boundary to the design-basis caverns is as little as 150 ft. A 300-ft distance from this boundary is likely to be the minimum acceptable stand-off, from both a geologic and a regulatory perspective. Repositioning of the proposed cavern field is possible, as sufficient currently undeveloped salt acreage appears to be available. However, such reconfiguration would be subject to limitations related to land-parcel boundaries and other existing infrastructure and topographic constraints. More broadly speaking, the past history of cavern operations at the Stratton Ridge salt dome indicates that operation of potential SPR expansion caverns at this site may be difficult, and correspondingly expensive. Although detailed information is difficult to come by, widely accepted industry rumors are that numerous existing caverns have experienced major operational problems, including salt falls, sheared casings, and unintended releases of stored product(s). Many of these difficulties may be related to on-going differential movement of individual salt spines or to lateral movement at the caprock-salt interface. The history of operational problems, only some of which appear to be a matter of public record, combined with the potential for encountering escaped product from other operations, renders the Stratton Ridge salt dome a less-than-desirable site for SPR purposes.

More Details

Microwave to millimeter-wave electrodynamic response and applications of semiconductor nanostructures: LDRD project 67025 final report

Shaner, Eric A.; Highstrete, Clark H.; Reno, J.L.; Wanke, Michael W.

Solid-state lighting (SSL) technologies, based on semiconductor light emitting devices, have the potential to reduce worldwide electricity consumption by more than 10%, which could significantly reduce U.S. dependence on imported energy and improve energy security. The III-nitride (AlGaInN) materials system forms the foundation for white SSL and could cover a wide spectral range from the deep UV to the infrared. For this LDRD program, we have investigated the synthesis of single-crystalline III-nitride nanowires and heterostructure nanowires, which may possess unique optoelectronic properties. These novel structures could ultimately lead to the development of novel and highly efficient SSL nanodevice applications. GaN and III-nitride core-shell heterostructure nanowires were successfully synthesized by metal organic chemical vapor deposition (MOCVD) on two-inch wafer substrates. The effect of process conditions on nanowire growth was investigated, and characterization of the structural, optical, and electrical properties of the nanowires was also performed.

More Details

Laser based micro forming and assembly

Palmer, Jeremy A.; Knorovsky, Gerald A.; Maccallum, Danny O.; Scherzinger, William M.; Wong, Chungnin C.

It has been shown that thermal energy imparted to a metallic substrate by laser heating induces a transient temperature gradient through the thickness of the sample. In favorable conditions of laser fluence and absorptivity, the resulting inhomogeneous thermal strain leads to a measurable permanent deflection. This project established parameters for laser micro forming of thin materials that are relevant to MESA generation weapon system components and confirmed methods for producing micrometer displacements with repeatable bend direction and magnitude. Precise micro forming vectors were realized through computational finite element analysis (FEA) of laser-induced transient heating that indicated the optimal combination of laser heat input relative to the material being heated and its thermal mass. Precise laser micro forming was demonstrated in two practical manufacturing operations of importance to the DOE complex: micrometer gap adjustments of precious metal alloy contacts and forming of meso scale cones.

More Details

LDRD final report on using chaos for ultrasensitive coherent signal detection

Chow, Weng W.; Torrington, Geoffrey K.

A quantum optical approach is proposed and analyzed as a solution to the problem of detecting weak coherent radiation in the presence of a strong incoherent background. The approach is based on the extreme sensitivity of laser dynamical nonlinearities to the coherence of external perturbation. This sensitivity leads to dynamical phase transitions that may be employed for detecting the presence of external coherent radiation. Of particular interest are the transitions between stable and chaotic states of laser operation. Using a baseline scheme consisting of a detector laser operating with a Fabry-Perot cavity, we demonstrated significant qualitative and quantitative differences in the response of the detector laser to the intensity and coherence of the external signal. Bifurcation analysis revealed that considerable modification to the extension of chaotic regions is possible by tailoring active medium and optical resonator configurations. Our calculations showed that with semiconductor lasers, destabilization can occur with a coherent external signal intensity that is over six orders of magnitude smaller than the detector laser's intracavity intensity. Discrimination between coherent and incoherent external signal also looks promising because of the over four orders of magnitude difference in intensity required for inducing chaos-like behavior. These results suggest that the proposed approach may be useful in laser sensor applications, such as satellite Laser Threat Warning Receivers (LTWR).

More Details

Active resonant subwavelength grating for scannerless range imaging sensors

Kemme, S.A.; Peters, D.W.; Boye, Robert B.; Nellums, Robert N.

In this late-start LDRD, we will present a design for a wavelength-agile, high-speed modulator that enables a long-term vision for the THz Scannerless Range Imaging (SRI) sensor. It takes the place of the currently-utilized SRI micro-channel plate which is limited to photocathode sensitive wavelengths (primarily in the visible and near-IR regimes). Two of Sandia's successful technologies--subwavelength diffractive optics and THz sources and detectors--are poised to extend the capabilities of the SRI sensor. The goal is to drastically broaden the SRI's sensing waveband--all the way to the THz regime--so the sensor can see through image-obscuring, scattering environments like smoke and dust. Surface properties, such as reflectivity, emissivity, and scattering roughness, vary greatly with the illuminating wavelength. Thus, objects that are difficult to image at the SRI sensor's present near-IR wavelengths may be imaged more easily at the considerably longer THz wavelengths (0.1 to 1mm). The proposed component is an active Resonant Subwavelength Grating (RSG). Sandia invested considerable effort on a passive RSG two years ago, which resulted in a highly-efficient (reflectivity greater than gold), wavelength-specific reflector. For this late-start LDRD proposal, we will transform the passive RSG design into an active laser-line reflector.

More Details

Final LDRD Report for Projects # 52797 and # 93362: Rational Understanding and Control of the Magnetic Behavior of Nanoparticles

Zhang, Z.J.

This is the final LDRD report for projects # 52797 and # 93362 that funded a five year research program directed by Prof. Z. John Zhang at the Georgia Institute of Technology Chemistry Department. Prof. Zhang was awarded this funding after winning a Presidential Early Career Award in Science and Engineering (PECASE) in 2001 with Sandia as the DOE sponsoring lab. The project PI was Blake Simmons and the PM was Alfredo Morales. The page intentionally left blank

More Details
Results 81501–81600 of 96,771
Results 81501–81600 of 96,771