This report covers research done as part of US Department of Energy contract DE-PS26-99FT14299 with the Fuel Cell Propulsion Institute on the fuel cell RATLER{trademark} vehicle, Lurch, as well as work done on the fuel cells designed for the vehicle. All work contained within this report was conducted at the Robotic Vehicle Range at Sandia National Laboratories in Albuquerque New Mexico. The research conducted includes characterization of the duty cycle of the robotic vehicle. This covers characterization of its various abilities such as hill climbing and descending, spin-turns, and driving on level ground. This was accomplished with the use of current sensors placed in the vehicle in conjunction with a Data Acquisition System (DAS), which was also created at Sandia Labs. Characterization of the two fuel cells was accomplished using various measuring instruments and techniques that will be discussed later in the report. A Statement of Work for this effort is included in Appendix A. This effort was able to complete characterization of vehicle duty cycle elements using battery power, but problems with the fuel cell control systems prevented completion of the characterization of the fuel cell operation on the benchtop and in the vehicle. Some data was obtained characterizing the fuel cell current-voltage performance and thermal rise rate by bypassing elements of the control system.
RMS Guidelines defines the processes and conventions to manage both records and documents for the ASCI Verification and Validation Program at Sandia National Laboratories, employing the ASCI V&V RMS application. It is the definitive source for all information regarding the creation, submittal, use, maintenance, and disposition of records and documents. This document is also used as evidence of meeting records management requirements as stated in DOE Order 414.1A, Quality Assurance, and Sandia National Laboratories Corporate Technical Business Practice TBP-500, Records Management.
We have conducted surface treatment and alloying experiments with Al, Fe, and Ti-based metals on the RHEPP-1 accelerator (0.8 MV, 20 W, 80 ns FHWM, up to 1 Hz repetition rate) at Sandia National Laboratories. Ions are generated by the MAP gas-breakdown active anode, which can yield a number of different beam species including H, N, and C, depending upon the injected gas. Beams of intense pulsed high-power ion beams have been used to produce surface modification by changes in microstructure caused by rapid heating and cooling of the surface. Increase of beam power leads to ablation of a target surface, and redeposition of ablated material onto a separate substrate. Experiments are described in which ion beams are used in an attempt to increase high-voltage breakdown of a treated surface. Surface alloying of coated Pt and Hf layers is also described. This mixing of a previously deposited thin-film layer into a Ti-alloy substrate leads to significantly enhanced surface wear durability, compared to either untreated Ti-alloy alone, or the Ti alloy alone treated with the ion beam. Thin-film layers have been produced from a number of target materials. Films of fine-grain Pt and Er are described, and are compared to conventionally formed films. First attempts to form high-dielectric constant BaTiO{sub 3} are described.
The Electricity Generation Cost Simulation Model (GenSim) is a user-friendly, high-level dynamic simulation model that calculates electricity production costs for variety of electricity generation technologies, including: pulverized coal, gas combustion turbine, gas combined cycle, nuclear, solar (PV and thermal), and wind. The model allows the user to quickly conduct sensitivity analysis on key variables, including: capital, O&M, and fuel costs; interest rates; construction time; heat rates; and capacity factors. The model also includes consideration of a wide range of externality costs and pollution control options for carbon dioxide, nitrogen oxides, sulfur dioxide, and mercury. Two different data sets are included in the model; one from the US. Department of Energy (DOE) and the other from Platt's Research Group. Likely users of this model include executives and staff in the Congress, the Administration and private industry (power plant builders, industrial electricity users and electric utilities). The model seeks to improve understanding of the economic viability of various generating technologies and their emissions trade-offs. The base case results, using the DOE data, indicate that in the absence of externality costs, or renewable tax credits, pulverized coal and gas combined cycle plants are the least cost alternatives at 3.7 and 3.5 cents/kwhr, respectively. A complete sensitivity analysis on fuel, capital, and construction time shows that these results coal and gas are much more sensitive to assumption about fuel prices than they are to capital costs or construction times. The results also show that making nuclear competitive with coal or gas requires significant reductions in capital costs, to the $1000/kW level, if no other changes are made. For renewables, the results indicate that wind is now competitive with the nuclear option and is only competitive with coal and gas for grid connected applications if one includes the federal production tax credit of 1.8cents/kwhr.
This report describes the process that will be used to develop and submit for approval designs for the Sandia Extended Network (SXN). The process follows the steps in the Change Management Process used in the Telecommunication Operations Department's quality management system. Those steps are planning, requirements review, detailed design analysis, implementation, verification, and validation. Two companion reports complete a description of the designs to date: ''Sandia Extended Network: Design Requirements and Sandia Extended Network: Conceptual Design Definition.''
This report contains the design requirements for creating a limited-access Sandia Extended Network (SXN), which would be used to collaborate with Nuclear Weapons Complex Labs personnel, university collaborators, industry, and others who may not be allowed accounts on the Sandia Restricted Network (SRN). This document contains the design requirements for creating a limited-access Sandia Extended Network (SXN), which would be used by non-Sandians to collaborate with NWC Labs personnel and others who are not allowed accounts on the Sandia Restricted Network (SRN). Its main purpose is to articulate the requirements upon which the design options and hardware costs for the Sandia eXtended Network (SXN) can be based and in turn presented to 8900 and 9300 Management. The requirements are further addressed in reports outlining its security architecture and in the five-volume set of network architecture reports: An Architecture for the Sandia Extended Network: Overview; Detailed Description of the Architecture, Design of the Model, and Balanced Protections; Background of the Architecture and its Relevance to Sandia; Terminology and Concepts Relevant to Networks; and Policy-Based Networks and Information Management.
The goal of this project was to increase the power of vertical cavity surface emitting lasers and to convert their wavelength into the blue/ultraviolet and the infrared for sensing applications. We have increased the power to the multi-watt level and have generated several milliwatts of blue light using optical pumping. Electrical pump has been less successful, but we have identified the problems and begun work to overcome them using a bottom emitting design.
This report describes the various methods and circuits that have been developed to detect an islanding condition for photovoltaic applications and presents three methods that have been developed to test those methods and circuits. Passive methods for detecting an islanding condition basically monitor parameters such as voltage and frequency and/or their characteristics and cause the inverter to cease converting power when there is sufficient transition from normal specified conditions. Active methods for detecting the island introduce deliberate changes or disturbances to the connected circuit and then monitor the response to determine if the utility grid with its stable frequency, voltage and impedance is still connected. If the small perturbation is able to affect the parameters of the load connection within prescribed requirements, the active circuit causes the inverter to cease power conversion and delivery of power to the loads. The methods not resident in the inverter are generally controlled by the utility or have communications between the inverter and the utility to affect an inverter shut down when necessary. This report also describes several test methods that may be used for determining whether the anti-islanding method is effective. The test circuits and methodologies used in the U.S. have been chosen to limit the number of tests by measuring the reaction of a single or small number of inverters under a set of consensus-based worst-case conditions.
A new protocol technology is just starting to emerge from the laboratory environment. Its stated purpose is to provide an additional means in which networks, and the services that reside on them, can be protected from adversarial compromise. This report has a two-fold objective. First is to provide the reader with an overview of this emerging Dynamic Defenses technology using Dynamic Network Address Translation (Dynat). This ''structure overview'' is concentrated in the body of the report, and describes the important attributes of the technology. The second objective is to provide a framework that can be used to help in the classification and assessment of the different types of dynamic defense technologies along with some related capabilities and limitations. This information is primarily contained in the appendices.
An Interferometric Moving Target Indicator radar can be used to measure the tangential velocity component of a moving target. Multiple baselines, along with the conventional radial velocity measurement, allow estimating the true 3-D velocity vector of a target.
We have undertaken the synthesis of a thin film ''All Ceramic Battery'' (ACB) using solution route processes. Based on the literature and experimental results, we selected SnO{sub 2}, LiCoO{sub 2}, and LiLaTiO{sub 3} (LLT) as the anode, cathode, and electrolyte, respectively. Strain induced by lattice mismatch between the cathode and bottom electrode, as estimated by computational calculations, indicate that thin film orientations for batteries when thicknesses are as low as 500 {angstrom} are strongly controlled by surface energies. Therefore, we chose platinized silicon as the basal platform based on our previous experience with this material. The anode thin films were generated by standard spin-cast methods and processing using a solution of [Sn(ONep)]{sub 8} and HOAc which was found to form Sn{sub 6}(O){sub 4}(ONep){sub 4}. Electrochemical evaluation showed that the SnO{sub 2} was converted to Sn{sup o} during the first cycle. The cathode was also prepared by spin coating using the novel [Li(ONep)]{sub 8} and Co(OAc){sub 2}. The films could be electrochemically cycled (i.e., charged/discharged), with all of the associated structural changes being observable by XRD. Computational models indicated that the LLT electrolyte would be the best available ceramic material for use as the electrolyte. The LLT was synthesized from [Li(ONep)]{sub 8}, [Ti(ONep){sub 4}]{sub 2}, and La(DIP){sub 3}(py){sub 3} with RTP processing at 900 C being necessary to form the perovskite phase. Alternatively, a novel route to thin films of the block co-polymer ORMOLYTE was developed. The integration of these components was undertaken with each part of the assembly being identifiably by XRD analysis (this will allow us to follow the progress of the charge/discharge cycles of the battery during use). SEM investigations revealed the films were continuous with minimal mixing. All initial testing of the thin-film cathode/electrolyte/anode ACB devices revealed electrical shorting. Alternative approaches for preparing non-shorted devices (e.g. inverted and side-by-side) are under study.
The SIERRA Framework core services provide essential services for managing the mesh data structure, computational fields, and physics models of an application. An application using these services will supply a set of physics models, define the computational fields that are required by those models, and define the mesh upon which its physics models operate. The SIERRA Framework then manages all of the data for a massively parallel multiphysics application.