Publications

Results 26–50 of 151

Search results

Jump to search filters

An overview of magneto-inertial fusion on the Z Machine at Sandia National Laboratories

Yager-Elorriaga, David A.; Gomez, Matthew R.; Ruiz, Daniel E.; Slutz, Stephen A.; Harvey-Thompson, Adam J.; Jennings, Christopher A.; Knapp, Patrick K.; Schmit, Paul S.; Weis, Matthew R.; Awe, Thomas J.; Chandler, Gordon A.; Mangan, Michael M.; Myers, Clayton E.; Fein, Jeffrey R.; Geissel, Matthias G.; Glinsky, Michael E.; Hansen, Stephanie B.; Harding, Eric H.; Lamppa, Derek C.; Webster, Evelyn L.; Rambo, Patrick K.; Robertson, Grafton K.; Savage, Mark E.; Smith, Ian C.; Ampleford, David A.; Beckwith, Kristian B.; Peterson, Kara J.; Porter, John L.; Rochau, G.A.; Sinars, Daniel S.

Abstract not provided.

An overview of magneto-inertial fusion on the Z Machine at Sandia National Laboratories

Yager-Elorriaga, David A.; Gomez, Matthew R.; Ruiz, Daniel E.; Slutz, Stephen A.; Harvey-Thompson, Adam J.; Jennings, Christopher A.; Weis, Matthew R.; Awe, Thomas J.; Chandler, Gordon A.; Myers, Clayton E.; Fein, Jeffrey R.; Geissel, Matthias G.; Glinsky, Michael E.; Hansen, Stephanie B.; Harding, Eric H.; Lamppa, Derek C.; Laros, James H.; Robertson, Grafton K.; Savage, Mark E.; Ampleford, David A.; Beckwith, Kristian B.; Peterson, Kyle J.; Porter, John L.; Rochau, G.A.

Abstract not provided.

Performance Scaling in Magnetized Liner Inertial Fusion Experiments

Physical Review Letters

Gomez, Matthew R.; Slutz, Stephen A.; Jennings, Christopher A.; Ampleford, David A.; Weis, Matthew R.; Myers, Clayton E.; Yager-Elorriaga, David A.; Hahn, K.D.; Hansen, Stephanie B.; Harding, Eric H.; Harvey-Thompson, Adam J.; Lamppa, Derek C.; Mangan, Michael M.; Knapp, Patrick K.; Awe, Thomas J.; Chandler, Gordon A.; Cooper, Gary W.; Fein, Jeffrey R.; Geissel, Matthias G.; Glinsky, Michael E.; Laros, James H.; Ruiz, C.L.; Ruiz, Daniel E.; Savage, Mark E.; Schmit, Paul S.; Smith, Ian C.; Styron, J.D.; Porter, John L.; Jones, Brent M.; Mattsson, Thomas M.; Peterson, Kyle J.; Rochau, G.A.; Sinars, Daniel S.

We present experimental results from the first systematic study of performance scaling with drive parameters for a magnetoinertial fusion concept. In magnetized liner inertial fusion experiments, the burn-averaged ion temperature doubles to 3.1 keV and the primary deuterium-deuterium neutron yield increases by more than an order of magnitude to 1.1×1013 (2 kJ deuterium-tritium equivalent) through a simultaneous increase in the applied magnetic field (from 10.4 to 15.9 T), laser preheat energy (from 0.46 to 1.2 kJ), and current coupling (from 16 to 20 MA). Individual parametric scans of the initial magnetic field and laser preheat energy show the expected trends, demonstrating the importance of magnetic insulation and the impact of the Nernst effect for this concept. A drive-current scan shows that present experiments operate close to the point where implosion stability is a limiting factor in performance, demonstrating the need to raise fuel pressure as drive current is increased. Simulations that capture these experimental trends indicate that another order of magnitude increase in yield on the Z facility is possible with additional increases of input parameters.

More Details

Update on MagLIF preheat experiments

Harvey-Thompson, Adam J.; Geissel, Matthias G.; Weis, Matthew R.; Galloway, B.R.; Fein, Jeffrey R.; Awe, Thomas J.; Crabtree, Jerry A.; Ampleford, David A.; Bliss, David E.; Glinsky, Michael E.; Gomez, Matthew R.; Hanson, Joseph C.; Harding, Eric H.; Jennings, Christopher A.; Kimmel, Mark W.; Perea, L.; Peterson, Kyle J.; Porter, James D.; Rambo, Patrick K.; Robertson, Grafton K.; Ruiz, Daniel E.; Schwarz, Jens S.; Shores, Jonathon S.; Slutz, Stephen A.; Smith, Ian C.; York, Adam Y.; Paguio, R.R.; Smith, G.E.; Maudlin, M.; Pollock, B.

Abstract not provided.

Use of hydrodynamic theory to estimate electrical current redistribution in metals

Physics of Plasmas

Yu, Edmund Y.; Awe, Thomas J.; Cochrane, Kyle C.; Yates, K.C.; Hutchinson, T.M.; Peterson, Kyle J.; Bauer, Bruno S.

Using the analogy between hydrodynamic and electrical current flow, we study how electrical current density j redistributes and amplifies due to two commonly encountered inhomogeneities in metals. First, we consider flow around a spherical resistive inclusion and find significant j amplification, independent of inclusion size. Hence, even μm-scale inclusions can affect performance in applications by creating localized regions of enhanced Joule heating. Next, we investigate j redistribution due to surface roughness, idealized as a sinusoidal perturbation with amplitude A and wavelength λ. Theory predicts that j amplification is determined by the ratio A/λ, so that even "smooth"surface finishes (i.e., small A) can generate significant amplification, if λ is correspondingly small. We compare theory with magnetohydrodynamic simulation to illustrate both the utility and limitations of the steady-state theory.

More Details

Benchmarking 3D-MHD simulations of electrothermal instability growth by studying z-pinches with engineered defects

Awe, Thomas J.

The electrothermal instability (ETI) is driven by Joule heating and arises from the dependence of resistivity on temperature. ETI may drive azimuthally correlated surface density variations which seed magneto Rayleigh-Taylor (MRT) instability growth. Liner implosion studies suggest that dielectric surface coatings reduce the amplitude of ETI driven perturbations. Furthermore, previous fundamental physics studies suggest that non-metallic inclusions within the metal can seed ETI growth. In this project, we aimed to (1) determine how dielectric coatings modify ETI growth by varying the coating thickness and the surface structure of the underlying metal, and (2) study overheating from engineered defects—designed lattices of micron-scale pits. Engineered pits divert current density and drive local overheating in a way that can be compared with 3DMHD simulations. All experiments were executed on the Sandia Mykonos Facility. Facility and diagnostic investments enabled high quality data to be gathered in support of project deliverables.

More Details

Implosion of auto-magnetizing helical liners on the Z facility

Physics of Plasmas

Shipley, Gabriel A.; Awe, Thomas J.; Hutsel, Brian T.; Greenly, John B.; Jennings, Christopher A.; Slutz, Stephen A.

In the first auto-magnetizing liner implosion experiments on the Z Facility, precompressed internal axial fields near 150 T were measured and 7.2-keV radiography indicated a high level of cylindrical uniformity of the imploding liner's inner surface. An auto-magnetizing (AutoMag) liner is made of discrete metallic helical conductors encapsulated in insulating material. Here, the liner generates internal axial magnetic field as a 1–2 MA, 100–200 ns current prepulse flows through the helical conductors. After the prepulse, the fast-rising main current pulse causes the insulating material between the metallic helices to break down ceasing axial field production. After breakdown, the helical liner, nonuniform in both density and electrical conductivity, implodes in 100 ns. In-flight radiography data demonstrate that while the inner wall maintains cylindrical uniformity, multiple new helically oriented structures are self-generated within the outer liner material layers during the implosion; this was not predicted by simulations. Furthermore, liner stagnation was delayed compared to simulation predictions. An analytical implosion model is compared with experimental data and preshot simulations to explore how changes in the premagnetization field strength and drive current affect the liner implosion trajectory. Both the measurement of >100 T internal axial field production and the demonstration of cylindrical uniformity of the imploding liner's inner wall are encouraging for promoting the use of AutoMag liners in future MagLIF experiments.

More Details

Designing and testing new preheat protocols for MagLIF

Harvey-Thompson, Adam J.; Geissel, Matthias G.; Weis, Matthew R.; Peterson, Kyle J.; Glinsky, Michael E.; Awe, Thomas J.; Bliss, David E.; Gomez, Matthew R.; Harding, Eric H.; Hansen, Stephanie B.; Kimmel, Mark W.; Knapp, Patrick K.; Lewis, Sean M.; Porter, John L.; Rochau, G.A.; Schollmeier, Marius; Schwarz, Jens S.; Shores, Jonathon S.; Slutz, Stephen A.; Sinars, Daniel S.; Smith, Ian C.; Speas, Christopher S.

Abstract not provided.

Designing And Testing New MagLIF Preheat Protocols

Harvey-Thompson, Adam J.; Geissel, Matthias G.; Weis, Matthew R.; Jennings, Christopher A.; Glinsky, Michael E.; Peterson, Kyle J.; Awe, Thomas J.; Bliss, David E.; Gomez, Matthew R.; Harding, Eric H.; Hansen, Stephanie B.; Kimmel, Mark W.; Knapp, Patrick K.; Lewis, Sean M.; Porter, John L.; Rambo, Patrick K.; Rochau, G.A.; Schollmeier, Marius; Schwarz, Jens S.; Shores, Jonathon S.; Slutz, Stephen A.; Sinars, Daniel S.; Smith, Ian C.; Speas, Christopher S.

Abstract not provided.

MagLIF laser preheat update

Harvey-Thompson, Adam J.; Geissel, Matthias G.; Weis, Matthew R.; Jennings, Christopher A.; Glinsky, Michael E.; Peterson, Kyle J.; Awe, Thomas J.; Bliss, David E.; Gomez, Matthew R.; Harding, Eric H.; Hansen, Stephanie B.; Kimmel, Mark W.; Knapp, Patrick K.; Lewis, Sean M.; Schollmeier, Marius; Schwarz, Jens S.; Sefkow, Adam B.; Shores, Jonathon S.; Slutz, Stephen A.; Sinars, Daniel S.; Smith, Ian C.; Speas, Christopher S.; Wei, M.S.; Vesey, Roger A.; Porter, John L.

Abstract not provided.

Enhancing performance of magnetized liner inertial fusion at the Z facility

Physics of Plasmas

Slutz, Stephen A.; Gomez, Matthew R.; Hansen, Stephanie B.; Harding, Eric H.; Hutsel, Brian T.; Knapp, Patrick K.; Lamppa, Derek C.; Awe, Thomas J.; Ampleford, David A.; Bliss, David E.; Chandler, Gordon A.; Cuneo, M.E.; Geissel, Matthias G.; Glinsky, Michael E.; Hahn, Kelly D.; Harvey-Thompson, Adam J.; Hess, Mark H.; Jennings, Christopher A.; Jones, Brent M.; Laity, George R.; Martin, Matthew; Peterson, Kyle J.; Porter, John L.; Rambo, Patrick K.; Rochau, G.A.; Rovang, Dean C.; Ruiz, Carlos L.; Savage, Mark E.; Schwarz, Jens S.; Schmit, Paul S.; Shipley, Gabriel A.; Sinars, Daniel S.; Smith, Ian C.; Stygar, William; Vesey, Roger A.; Weis, Matthew R.

The Magnetized Liner Inertial Fusion concept (MagLIF) [Slutz et al., Phys. Plasmas 17, 056303 (2010)] is being studied on the Z facility at Sandia National Laboratories. Neutron yields greater than 1012 have been achieved with a drive current in the range of 17-18 MA and pure deuterium fuel [Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)]. We show that 2D simulated yields are about twice the best yields obtained on Z and that a likely cause of this difference is the mix of material into the fuel. Mitigation strategies are presented. Previous numerical studies indicate that much larger yields (10-1000 MJ) should be possible with pulsed power machines producing larger drive currents (45-60 MA) than can be produced by the Z machine [Slutz et al., Phys. Plasmas 23, 022702 (2016)]. To test the accuracy of these 2D simulations, we present modifications to MagLIF experiments using the existing Z facility, for which 2D simulations predict a 100-fold enhancement of MagLIF fusion yields and considerable increases in burn temperatures. Experimental verification of these predictions would increase the credibility of predictions at higher drive currents.

More Details

Uncovering signatures of preheat performance in MagLIF experiments using stimulated Raman and Brillouin backscatter spectra

Fein, Jeffrey R.; Bliss, David E.; Geissel, Matthias G.; Harvey-Thompson, Adam J.; Awe, Thomas J.; Ampleford, David A.; Glinsky, Michael E.; Laros, James H.; Harding, Eric H.; Macrunnels, K.A.; Patel, Sonal P.; Ruiz, Daniel E.; Scoglietti, Daniel S.; Smith, Ian C.; Weis, Matthew R.; Peterson, Kara J.

Abstract not provided.

Results 26–50 of 151
Results 26–50 of 151