Coulomb drag is a powerful tool to study interactions in coupled low-dimensional systems. Historically, Coulomb drag has been attributed to a frictional force arising from momentum transfer whose direction is dictated by the current flow. In the absence of electron-electron correlations, treating the Coulomb drag circuit as a rectifier of noise fluctuations yields similar conclusions about the reciprocal nature of Coulomb drag. In contrast, recent findings in one-dimensional systems have identified a nonreciprocal contribution to Coulomb drag that is independent of the current flow direction. In this work, we present Coulomb drag measurements between vertically coupled GaAs/AlGaAs quantum wires separated vertically by a hard barrier only 15 nm wide, where both reciprocal and nonreciprocal contributions to the drag signal are observed simultaneously, and whose relative magnitudes are temperature and gate tunable. Our study opens up the possibility of studying the physical mechanisms behind the onset of both Coulomb drag contributions simultaneously in a single device, ultimately leading to a better understanding of Luttinger liquids in multi-channel wires and paving the way for the creation of energy harvesting devices.
Harmonic and subharmonic RF injection locking is demonstrated in a terahertz (THz) quantum-cascade vertical-external-cavity surface-emitting laser (QC-VECSEL). By tuning the RF injection frequency around integer multiples and submultiples of the cavity round-trip frequency, different harmonic and subharmonic orders can be excited in the same device. Modulation-dependent behavior of the device has been studied with recorded lasing spectral broadening and locking bandwidths in each case. In particular, harmonic injection locking results in the observation of harmonic spectra with bandwidths over 200 GHz. A semiclassical Maxwell-density matrix formalism has been applied to interpret QC-VECSEL dynamics, which aligns well with experimental observations.
The goal of this Exploratory Express project was to explore the possibility of tunable ferromagnetism in Mn or Cr incorporated epitaxial Ga2O3 films. Tunability of magnetic properties can enable novel applications in spintronics, quantum computing, and magnetism-based logics by allowing control of magnetism down to the nanoscale. Carriers (electrons or holes) mediated ferromagnetic ordering in semiconductor can lead to tunable ferromagnetism by leveraging the tunability of carrier density with doping level, gate electric field, or optical pumping of the carriers. The magnetic ions (Cr or Mn) in Ga2O3 act as localized spin centers which can potentially be magnetically coupled through conduction electrons to enable ferromagnetic ordering. Here we investigated tunable ferromagnetism in beta Ga2O3 semiconductor host with various n-doping levels by incorporating 2.4 atomic percent Mn or Cr. The R&D approach involved growth of epitaxial Ga2O3 film on sapphire or Ga2O3 substrate, implantation of Mn or Cr ions, annealing of the samples post implantation, and magnetic measurements. We studied magnetic behavior of Mn:Ga2O3 as a function of different n-doping levels and various annealing temperatures. The vibrating sample magnetometry (VSM) measurement exhibited strong ferromagnetic signals from the annealed Mn:Ga2O3 sample with n-doping level of 5E19 cm-3. This ferromagnetic behavior disappears from Mn:Ga2O3 when the n-doping level is reduced to 5E16 cm-3. Although these results are to be further verified by other measurement schemes due to the observation of background ferromagnetism from the growth substrate, these results indicate the possibility of tunable ferromagnetism in Mn:Ga2O3 mediated by conduction electrons.
Frequency-modulated (FM) combs based on active cavities like quantum cascade lasers have recently emerged as promising light sources in many spectral regions. Unlike passive modelocking, which generates amplitude modulation using the field’s amplitude, FM comb formation relies on the generation of phase modulation from the field’s phase. They can therefore be regarded as a phase-domain version of passive modelocking. However, while the ultimate scaling laws of passive modelocking have long been known—Haus showed in 1975 that pulses modelocked by a fast saturable absorber have a bandwidth proportional to effective gain bandwidth—the limits of FM combs have been much less clear. Here, we show that FM combs based on fast gain media are governed by the same fundamental limits, producing combs whose bandwidths are linear in the effective gain bandwidth. Not only do we show theoretically that the diffusive effect of gain curvature limits comb bandwidth, but we also show experimentally how this limit can be increased. By adding carefully designed resonant-loss structures that are evanescently coupled to the cavity of a terahertz laser, we reduce the curvature and increase the effective gain bandwidth of the laser, demonstrating bandwidth enhancement. Our results can better enable the creation of active chip-scale combs and be applied to a wide array of cavity geometries.
This study conducts a comparative analysis, using non-equilibrium Green’s functions (NEGF), of two state-of-the-art two-well (TW) Terahertz Quantum Cascade Lasers (THz QCLs) supporting clean 3-level systems. The devices have nearly identical parameters and the NEGF calculations with an abrupt-interface roughness height of 0.12 nm predict a maximum operating temperature (Tmax) of ~ 250 K for both devices. However, experimentally, one device reaches a Tmax of ~ 250 K and the other a Tmax of only ~ 134 K. Both devices were fabricated and measured under identical conditions in the same laboratory, with high quality processes as verified by reference devices. The main difference between the two devices is that they were grown in different MBE reactors. Our NEGF-based analysis considered all parameters related to MBE growth, including the maximum estimated variation in aluminum content, growth rate, doping density, background doping, and abrupt-interface roughness height. From our NEGF calculations it is evident that the sole parameter to which a drastic drop in Tmax could be attributed is the abrupt-interface roughness height. We can also learn from the simulations that both devices exhibit high-quality interfaces, with one having an abrupt-interface roughness height of approximately an atomic layer and the other approximately a monolayer. However, these small differences in interface sharpness are the cause of the large performance discrepancy. This underscores the sensitivity of device performance to interface roughness and emphasizes its strategic role in achieving higher operating temperatures for THz QCLs. We suggest Atom Probe Tomography (APT) as a path to analyze and measure the (graded)-interfaces roughness (IFR) parameters for THz QCLs, and subsequently as a design tool for higher performance THz QCLs, as was done for mid-IR QCLs. Our study not only addresses challenges faced by other groups in reproducing the record Tmax of ~ 250 K and ~ 261 K but also proposes a systematic pathway for further improving the temperature performance of THz QCLs beyond the state-of-the-art.
Renteria, Emma J.; Heileman, Grant D.; Neely, Jordan P.; Addamane, Sadhvikas J.; Rotter, Thomas J.; Balakrishnan, Ganesh; Christodoulou, Christos G.; Cavallo, Francesca
Here, it is demonstrated that single-crystalline and highly doped GaAs membranes are excellent candidates for realizing infrared-transparent shields of electromagnetic interference at millimeter frequencies. Measured optical transmittance spectra for the semiconductor membranes show resonant features between 750 and 2500 nm, with a 100% maximum transmittance. The shielding effectiveness of the membranes is extracted from measured scattering parameters between 65 and 85 GHz. Selected GaAs membranes and membranes/polyamide films exhibit shielding effectiveness ranging from 22 to 40 dB, which are suitable values to ensure the safe operation of infrared devices for commercial applications. Theoretical calculations based on a plane wave model show that the interplay of primary reflection and multiple internal reflections of the radio-frequency waves results in broadband shielding capabilities of the membrane between 10 and 300 GHz.
Terahertz (THz) near-field imaging and spectroscopy provide valuable insights into the fundamental physical processes occurring in THz resonators and metasurfaces on the subwavelength scale. However, so far, the mapping of THz surface currents has remained outside the scope of THz near-field techniques. In this study, we demonstrate that aperture-type scanning near-field microscopy enables non-contact imaging of THz surface currents in subwavelength resonators. Through extensive near-field mapping of an asymmetric D-split-ring THz resonator and full electromagnetic simulations of the resonator and the probe, we demonstrate the correlation between the measured near-field images and the THz surface currents. The observed current dynamics in the interval of several picoseconds reveal the interplay between several excited modes, including dark modes, whereas broadband THz near-field spectroscopy analysis enables the characterization of electromagnetic resonances defined by the resonator geometry.
Ince, Fatih F.; Frost, Mega; Shima, Darryl; Rotter, Thomas J.; Addamane, Sadhvikas J.; Mccartney, Martha R.; Smith, David J.; Canedy, Chadwick L.; Tomasulo, Stephanie; Kim, Chul S.; Bewley, William W.; Vurgaftman, Igor; Meyer, Jerry R.; Balakrishnan, Ganesh
Interband cascade light-emitting diodes (ICLEDs) offer attractive advantages for infrared applications, which would greatly expand if high-quality growth on silicon substrates could be achieved. Here, this work describes the formation of threading dislocations in ICLEDs grown monolithically on GaSb-on-Silicon wafers. The epitaxial growth is done in two stages: the GaSb-on-Silicon buffer is grown first, followed by the ICLED growth. The buffer growth involves the nucleation of a 10-nm-thick AlSb buffer layer on the silicon surface, followed by the GaSb growth. The AlSb nucleation layer promotes the formation of 90° and 60° interfacial misfit dislocations, resulting in a highly planar morphology for subsequent GaSb growth that is almost 100% relaxed. The resulting GaSb buffer for growth of the ICLED has a threading dislocation density of ~107/cm2 after ~3 μm of growth. The fabricated LEDs showed variations in device performance, with some devices demonstrating comparable light–current–voltage curves to those for devices grown on GaSb substrates, while other devices showed somewhat reduced relative performance. Cross-sectional transmission electron microscopy observations of the inferior diodes indicated that the multiplication of threading dislocations in the active region had most likely caused the increased leakage current and lower output power. Enhanced defect filter layers on the GaSb/Si substrates should provide more consistent diode performance and a viable future growth approach for antimonide-based ICLEDs and other infrared devices.
Skyrmions and antiskyrmions are nanoscale swirling textures of magnetic moments formed by chiral interactions between atomic spins in magnetic noncentrosymmetric materials and multilayer films with broken inversion symmetry. These quasiparticles are of interest for use as information carriers in next-generation, low-energy spintronic applications. To develop skyrmion-based memory and logic, we must understand skyrmion-defect interactions with two main goals—determining how skyrmions navigate intrinsic material defects and determining how to engineer disorder for optimal device operation. Here, we introduce a tunable means of creating a skyrmion-antiskyrmion system by engineering the disorder landscape in FeGe using ion irradiation. Specifically, we irradiate epitaxial B20-phase FeGe films with 2.8 MeV Au4+ ions at varying fluences, inducing amorphous regions within the crystalline matrix. Using low-temperature electrical transport and magnetization measurements, we observe a strong topological Hall effect with a double-peak feature that serves as a signature of skyrmions and antiskyrmions. These results are a step towards the development of information storage devices that use skyrmions and antiskyrmions as storage bits, and our system may serve as a testbed for theoretically predicted phenomena in skyrmion-antiskyrmion crystals.
Rahaman, Mohammad H.; Lee, Chang-Min; Buyukkaya, Mustafa A.; Harper, Samuel; Islam, Fariba; Addamane, Sadhvikas J.; Waks, Edo
Photonic crystal nanobeam cavities are valued for their small mode volume, CMOS compatibility, and high coupling efficiency-crucial features for various low-power photonic applications and quantum information processing. However, despite their potential, nanobeam cavities often suffer from low quality factors due to fabrication imperfections that create surface states and optical absorption. In this work, we demonstrate InP nanobeam cavities with up to 140% higher quality factors by applying a coating of Al2O3 via atomic layer deposition to terminate dangling bonds and reduce surface absorption. Additionally, changing the deposition thickness allows precise tuning of the cavity mode wavelength without compromising the quality factor. This Al2O3 atomic layer deposition approach holds great promise for optimizing nanobeam cavities that are well-suited for integration with a wide range of photonic applications.
Shahili, Mohammad; Addamane, Sadhvikas J.; Kim, Anthony D.; Curwen, Christopher A.; Kawamura, Jonathan H.; Williams, Benjamin S.
Design strategies for improving terahertz (THz) quantum cascade lasers (QCLs) in the 5-6THz range are investigated numerically and experimentally, with the goal of overcoming the degradation in performance that occurs as the laser frequency approaches the Reststrahlen band. Two designs aimed at 5.4THz were selected: one optimized for lower power dissipation and one optimized for better temperature performance. The active regions exhibited broadband gain, with the strongest modes lasing in the 5.3-5.6THz range, but with other various modes observed ranging from 4.76 to 6.03THz. Pulsed and continuous-wave (cw) operation is observed up to temperatures of 117K and 68K, respectively. In cw mode, the ridge laser has modes up to 5.71THz - the highest reported frequency for a THz QCL in cw mode. The waveguide loss associated with the doped contact layers and metallization is identified as a critical limitation to performance above 5THz.
Due to its tunable bandgap, anisotropic behavior, and superior thermoelectric properties, device applications using layered tellurene (Te) are becoming more attractive. Here, we report a thinning technique for exfoliated tellurene nanosheets using thermal annealing in an oxygen environment. We characterize different thinning parameters, including temperature and annealing time. Based on our measurements, we show that controlled layer thinning occurs in the narrow temperature range of 325-350 °C. We also show a reliable method to form β-tellurene oxide (β-TeO2), which is an emerging wide bandgap semiconductor with promising electronic and optoelectronic properties. This wide bandgap semiconductor exhibits a broad photoluminescence (PL) spectrum with multiple peaks covering the range of 1.76-2.08 eV. This PL emission, coupled with Raman spectra, is strong evidence of the formation of 2D β-TeO2. We discuss the results obtained and the mechanisms of Te thinning and β-TeO2 formation at different temperature regimes. We also discuss the optical bandgap of β-TeO2 and show the existence of pronounced excitonic effects evident by the large exciton binding energy in this 2D β-TeO2 system that reach 1.54-1.62 eV for bulk and monolayer, respectively. Our work can be utilized to have better control over the Te nanosheet thickness. It also sheds light on the formation of well-controlled β-TeO2 layered semiconductors for electronic and optoelectronic applications.
Mode-locked vertical external cavity semiconductor lasers are a unique class of nonlinear dynamical systems driven far from equilibrium. We present a novel, to the best of our knowledge, experimental result, supported by rigorous microscopic simulations, of two coexisting mode-locked V-cavity configurations sourced by a common gain medium and operating as independent channels at angle controlled separated wavelengths. Microscopic simulations support pulses coincident on the common gain chip extracting photons from a nearby pair of coexisting kinetic holes burned in the carrier distributions.
The effect of doping concentration on the temperature performance of the novel split-well resonant-phonon (SWRP) terahertz quantum-cascade laser (THz QCL) scheme supporting a clean 4-level system design was analyzed using non-equilibrium Green’s functions (NEGF) calculations. Experimental research showed that increasing the doping concentration in these designs led to better results compared to the split-well direct-phonon (SWDP) design, which has a larger overlap between its active laser states and the doping profile. However, further improvement in the temperature performance was expected, which led us to assume there was an increased gain and line broadening when increasing the doping concentration despite the reduced overlap between the doped region and the active laser states. Through simulations based on NEGF calculations we were able to study the contribution of the different scattering mechanisms on the performance of these devices. We concluded that the main mechanism affecting the lasers’ temperature performance is electron-electron (e-e) scattering, which largely contributes to gain and line broadening. Interestingly, this scattering mechanism is independent of the doping location, making efforts to reduce overlap between the doped region and the active laser states less effective. Optimization of the e-e scattering thus could be reached only by fine tuning of the doping density in the devices. By uncovering the subtle relationship between doping density and e-e scattering strength, our study not only provides a comprehensive understanding of the underlying physics but also offers a strategic pathway for overcoming current limitations. This work is significant not only for its implications on specific devices but also for its potential to drive advancements in the entire THz QCL field, demonstrating the crucial role of e-e scattering in limiting temperature performance and providing essential knowledge for pushing THz QCLs to new temperature heights.
Makaju, Rebika; Kassar, Hafsa; Daloglu, Sabahattin M.; Huynh, Anna; Laroche, Dominique; Levchenko, Alex; Addamane, Sadhvikas J.
Coulomb drag experiments have been an essential tool to study strongly interacting low-dimensional systems. Historically, this effect has been explained in terms of momentum transfer between electrons in the active and the passive layer. We report Coulomb drag measurements between laterally coupled GaAs/AlGaAs quantum wires in the multiple one-dimensional (1D) sub-band regime that break Onsager's reciprocity upon both layer and current direction reversal, in contrast to prior 1D Coulomb drag results. The drag signal shows nonlinear current-voltage (I-V) characteristics, which are well characterized by a third-order polynomial fit. These findings are qualitatively consistent with a rectified drag signal induced by charge fluctuations. However, the nonmonotonic temperature dependence of this drag signal suggests that strong electron-electron interactions, expected within the Tomonaga-Luttinger liquid framework, remain important and standard interaction models are insufficient to capture the qualitative nature of rectified 1D Coulomb drag.
A dry etching process to transfer the pattern of a photonic integrated circuit design for high-speed laser communications is described. The laser stack under consideration is a 3.2-µm-thick InGaAs/InAlAs/InAlGaAs epitaxial structure grown by molecular beam epitaxy. The etching was performed using Cl2-based inductively-coupled-plasma and reactive-ion-etching (ICP-RIE) reactors. Four different recipes are presented in two similar ICP-RIE reactors, with special attention paid to the etched features formed with various hard mask compositions, in-situ passivations, and process temperatures. The results indicate that it is possible to produce high-aspect-ratio features with sub-micron separation on this multilayer structure. Additionally, the results of the etching highlight the tradeoffs involved with the corresponding recipes.
Ince, Fatih F.; Frost, Mega; Shima, Darryl; Addamane, Sadhvikas J.; Canedy, Chadwick L.; Bewley, William W.; Tomasulo, Stephanie; Kim, Chul S.; Vurgaftman, Igor; Meyer, Jerry R.; Balakrishnan, Ganesh
The epitaxial development and characterization of metamorphic “GaSb-on-silicon” buffers as substrates for antimonide devices is presented. The approach involves the growth of a spontaneously and fully relaxed GaSb metamorphic buffer in a primary epitaxial reactor, and use of the resulting “GaSb-on-silicon” wafer to grow subsequent layers in a secondary epitaxial reactor. The buffer growth involves four steps—silicon substrate preparation for oxide removal, nucleation of AlSb on silicon, growth of the GaSb buffer, and finally capping of the buffer to prevent oxidation. This approach on miscut silicon substrates leads to a buffer with negligible antiphase domain density. The growth of this buffer is based on inducing interfacial misfit dislocations between an AlSb nucleation layer and the underlying silicon substrate, which results in a fully relaxed GaSb buffer. A 1 μm thick GaSb layer buffer grown on silicon has ~9.2 × 107 dislocations/cm2. The complete lack of strain in the epitaxial structure allows subsequent growths to be accurately lattice matched, thus making the approach ideal for use as a substrate. Here we characterize the GaSb-on-silicon wafer using high-resolution x-ray diffraction and transmission electron microscopy. The concept’s feasibility is demonstrated by growing interband cascade light emitting devices on the GaSb-on-silicon wafer. The performance of the resulting LEDs on silicon approaches that of counterparts grown lattice matched on GaSb.
We propose a method to extract the upper laser level’s (ULL’s) excess electronic temperature from the analysis of the maximum light output power (Pmax) and current dynamic range ΔJd = (Jmax – Jth) of terahertz quantum cascade lasers (THz QCLs). We validated this method, both through simulation and experiment, by applying it on THz QCLs supporting a clean three-level system. Detailed knowledge of electronic excess temperatures is of utmost importance in order to achieve high temperature performance of THz QCLs. Our method is simple and can be easily implemented, meaning an extraction of the excess electron temperature can be achieved without intensive experimental effort. This knowledge should pave the way toward improvement of the temperature performance of THz QCLs beyond the state-of-the-art.
We hereby offer a comprehensive analysis of various factors that could potentially enable terahertz quantum cascade lasers (THz QCLs) to achieve room temperature performance. We thoroughly examine and integrate the latest findings from recent studies in the field. Our work goes beyond a mere analysis; it represents a nuanced and comprehensive exploration of the intricate factors influencing the performance of THz QCLs. Through a comprehensive and holistic approach, we propose novel insights that significantly contribute to advancing strategies for improving the temperature performance of THz QCLs. This all-encompassing perspective allows us not only to present a synthesis of existing knowledge but also to offer a fresh and nuanced strategy to improve the temperature performance of THz QCLs. We draw new conclusions from prior works, demonstrating that the key to enhancing THz QCL temperature performance involves not only optimizing interface quality but also strategically managing doping density, its spatial distribution, and profile. This is based on our results from different structures, such as two experimentally demonstrated devices: the spit-well resonant-phonon and the two-well injector direct-phonon schemes for THz QCLs, which allow efficient isolation of the laser levels from excited and continuum states. In these schemes, the doping profile has a setback that lessens the overlap of the doped region with the active laser states. Our work stands as a valuable resource for researchers seeking to gain a deeper understanding of the evolving landscape of THz technology. Furthermore, we present a novel strategy for future endeavors, providing an enhanced framework for continued exploration in this dynamic field. This strategy should pave the way to potentially reach higher temperatures than the latest records reached for Tmax of THz QCLs.
We demonstrate an InAs-based terahertz (THz) metasurface emitter that can generate and focus THz pulses using a binary-phase Fresnel zone plate concept. The metalens emitter successfully generates a focused THz beam without additional THz optics.
Quantum cascade lasers (QCLs) have emerged as promising candidates for generating chip-scale frequency combs in mid-infrared and terahertz wavelengths. In this work, we demonstrate frequency comb formation in ring terahertz QCLs using the injection of light from a distributed feedback (DFB) laser. The DFB design frequency is chosen to match the modes of the ring cavity (near 3.3 THz), and light from the DFB is injected into the ring QCL via a bus waveguide. By controlling the power and frequency of the optical injection, we show that combs can be selectively formed and controlled in the ring cavity. Numerical modeling suggests that this comb is primarily frequency-modulated in character, with the injection serving to trigger comb formation. We also show that the ring can be used as a filter to control the output of the DFB QCL, potentially being of interest in terahertz photonic integrated circuits. Our work demonstrates that waveguide couplers are a compelling approach for injecting and extracting radiation from ring terahertz combs and offer exciting possibilities for the generation of new comb states in terahertz, such as frequency-modulated waves, solitons, and more.
We present an experimental study on a terahertz quantum cascade laser (THz QCL) design that combines both two-well injector and direct-phonon scattering schemes, i.e., a so-called two-well injector direct-phonon design. As a result of the two-well injector direct-phonon scheme presented here, the lasers benefit from both a direct phonon scattering scheme for the lower laser level depopulation and a setback for the doping profile that reduces the overlap of the doped region with active laser states. Additionally, our design also has efficient isolation of the active laser levels from excited and continuum states as indicated by negative differential resistance behavior all the way up to room temperature. This scheme serves as a good platform for improving the temperature performance of THz QCLs as indicated by the encouraging temperature performance results of the device with a relatively high doping level of 7.56 × 1010 cm−2 and Tmax ∼ 167 K. With the right optimization of the molecular beam epitaxy growth and interface quality, the injection coupling strength, and the doping density and its profile, the device could potentially reach higher temperatures than the latest records reached for the maximum operating temperature (Tmax) of THz QCLs.
Metamaterial resonators have become an efficient and versatile platform in the terahertz frequency range, finding applications in integrated optical devices, such as active modulators and detectors, and in fundamental research, e.g., ultrastrong light–matter investigations. Despite their growing use, characterization of modes supported by these subwavelength elements has proven to be challenging and it still relies on indirect observation of the collective far-field transmission/reflection properties of resonator arrays. Here, we present a broadband time-domain spectroscopic investigation of individual metamaterial resonators via a THz aperture scanning near-field microscope (a-SNOM). The time-domain a-SNOM allows the mapping and quantitative analysis of strongly confined modes supported by the resonators. In particular, a cross-polarized configuration presented here allows an investigation of weakly radiative modes. These results hold great potential to advance future metamaterial-based optoelectronic platforms for fundamental research in THz photonics.
Wang, Hanyu; Self, Ethan C.; Addamane, Sadhvikas J.; Rouleau, Christopher M.; Wixom, Ryan R.; Browning, Katie L.; Veith, Gabriel M.; Liang, Liyuan; Browning, James F.
Here, we report deposition of hematite/Pd thin films on silicon wafers via radio frequency (RF) magnetron sputtering and subsequent characterization for future in situ neutron reflectometry studies. Following deposition, the hematite/Pd thin films were characterized as prepared and after annealing in air for 2h at 400, 500, and 600 °C, respectively. Raman spectroscopy, grazing incidence x-ray diffraction, and neutron reflectometry (NR) were used to characterize the structure and chemical compositions of the thin films. The results indicate that pure α-Fe2O3 (hematite) films were produced, free from other iron oxide phases and impurities. NR data reveal that one intermediate layer between the Pd layer and the hematite layer was formed during sputtering deposition processes. The fitted scattering length density (SLD) of the as-deposited hematite layer is 70% of the theoretical SLD value, indicating that the grains are loosely packed in the RF-deposited hematite films. After annealing at elevated temperatures, the hematite films show increased SLD values but remain comparable to that of preannealed.
We present a highly diagonal “split-well resonant-phonon” (SWRP) active region design for GaAs/Al0.3Ga0.7As terahertz quantum cascade lasers (THz-QCLs). Negative differential resistance is observed at room temperature, which indicates the suppression of thermally activated leakage channels. The overlap between the doped region and the active level states is reduced relative to that of the split-well direct-phonon (SWDP) design. The energy gap between the lower laser level (LLL) and the injector is kept at 36 meV, enabling a fast depopulation of the LLL. Within this work, we investigated the temperature performance and potential of this structure.
IEEE Transactions on Terahertz Science and Technology
Curwen, Christopher A.; Kawamura, Jonathan H.; Hayton, Darren J.; Addamane, Sadhvikas J.; Reno, John L.; Williams, Benjamin S.; Karasik, Boris S.
We report high-resolution frequency study and phase locking have been performed on a terahertz (THz) quantum-cascade vertical-external-cavity surface-emitting laser (QC-VECSEL) operating around 2.5 THz. A subharmonic diode mixer is used to down convert the THz signal to a 100 MHz intermediate frequency that is phase locked to a stable 100 MHz microwave reference. Between 90% and 95% of the QC-VECSEL signal is locked within 2 Hz of the multiplied RF reference, and amplitude fluctuations on the order of 1%–10% are observed, depending on the bias point of the QC-VECSEL. The bandwidth of the locking loop is ~1 MHz. Many noise peaks in the IF signal are observed, likely corresponding to mechanical resonances in the 10 Hz–10 kHz. These peaks are generally -30 to -60 dB below the main tone and are below the phase noise level of the multiplied RF reference that ultimately limits the phase noise of the locked QC-VECSEL.
Multimodal datasets of materials are rich sources of information which can be leveraged for expedited discovery of process–structure–property relationships and for designing materials with targeted structures and/or properties. For this data descriptor article, we provide a multimodal dataset of magnetron sputter-deposited molybdenum (Mo) thin films, which are used in a variety of industries including high temperature coatings, photovoltaics, and microelectronics. In this dataset we explored a process space consisting of 27 unique combinations of sputter power and Ar deposition pressure. Here, the phase, structure, surface morphology, and composition of the Mo thin films were characterized by x-ray diffraction, scanning electron microscopy, atomic force microscopy, and Rutherford backscattering spectrometry. Physical properties—namely, thickness, film stress and sheet resistance—were also measured to provide additional film characteristics and behaviors. Additionally, nanoindentation was utilized to obtain mechanical load-displacement data. The entire dataset consists of 2072 measurements including scalar values (e.g., film stress values), 2D linescans (e.g., x-ray diffractograms), and 3D imagery (e.g., atomic force microscopy images). An additional 1889 quantities, including film hardness, modulus, electrical resistivity, density, and surface roughness, were derived from the experimental datasets using traditional methods. Minimal analysis and discussion of the results are provided in this data descriptor article to limit the authors’ preconceived interpretations of the data. Overall, the data modalities are consistent with previous reports of refractory metal thin films, ensuring that a high-quality dataset was generated. The entirety of this data is committed to a public repository in the Materials Data Facility.
Khalatpour, Ali; Tam, Man C.; Addamane, Sadhvikas J.; Reno, John; Wasilewski, Zbignew; Hu, Qing
Room temperature operation of terahertz quantum cascade lasers (THz QCLs) has been a long-pursued goal to realize compact semiconductor THz sources. In this paper, we report on improving the maximum operating temperature of THz QCLs to ∼261 K as a step toward the realization of this goal.
Strong and ultrastrong coupling between intersubband transitions in quantum wells and cavity photons have been realized in mid-infrared and terahertz spectral regions. However, most previous works employed a large number of quantum wells on rigid substrates to achieve coupling strengths reaching the strong or ultrastrong coupling regime. In this work, we experimentally demonstrate ultrastrong coupling between the intersubband transition in a single quantum well and the resonant mode of photonic nanocavity at room temperature. We also observe strong coupling between the nanocavity resonance and the second-order intersubband transition in a single quantum well. Furthermore, we implement for the first time such intersubband cavity polariton systems on soft and flexible substrates and demonstrate that bending of the single quantum well does not significantly affect the characteristics of the cavity polaritons. This work paves the way to broaden the range of potential applications of intersubband cavity polaritons including soft and wearable photonics.
Here, this Letter reports the growth, fabrication, and characterization of molecular beam epitaxy (MBE)-grown quaternary InAlGaAs/GaAs quantum dot (QD) lasers emitting at sub-900 nm. The presence of Al in QD-based active regions acts as the origin of defects and non-radiative recombination centers. Applying optimized thermal annealing annihilates the defects in p-i-n diodes, thus lowering the reverse leakage current by six orders of magnitude compared to as-grown devices. A systematic improvement in the optical properties of the devices is also observed in the laser devices with increasing annealing time. At an annealing temperature of 700°C for 180 s, Fabry–Pérot lasers exhibit a lower pulsed threshold current density at infinite length of 570 A/cm2.
We demonstrate an InAs-based nonlinear dielectric metasurface, which can generate terahertz (THz) pulses with opposite phase in comparison to an unpatterned InAs layer. It enables binary phase THz metasurfaces for generation and focusing of THz pulses.
We demonstrate the use of low-temperature grown GaAs (LT-GaAs) metasurface as an ultrafast photoconductive switching element gated with 1550 nm laser pulses. The metasurface is designed to enhance a weak two-step photon absorption at 1550 nm, enabling THz pulse detection.
Aperture near-field microscopy and spectroscopy (a-SNOM) enables the direct experimental investigation of subwavelength-sized resonators by sampling highly confined local evanescent fields on the sample surface. Despite its success, the versatility and applicability of a-SNOM is limited by the sensitivity of the aperture probe, as well as the power and versatility of THz sources used to excite samples. Recently, perfectly absorbing photoconductive metasurfaces have been integrated into THz photoconductive antenna detectors, enhancing their efficiency and enabling high signal-to-noise ratio THz detection at significantly reduced optical pump powers. Here, we discuss how this technology can be applied to aperture near-field probes to improve both the sensitivity and potentially spatial resolution of a-SNOM systems. In addition, we explore the application of photoconductive metasurfaces also as near-field THz sources, providing the possibility of tailoring the beam profile, polarity and phase of THz excitation. Photoconductive metasurfaces therefore have the potential to broaden the application scope of aperture near-field microscopy to samples and material systems which currently require improved spatial resolution, signal-to-noise ratio, or more complex excitation conditions.
Advancements in photonic quantum information systems (QIS) have driven the development of high-brightness, on-demand, and indistinguishable semiconductor epitaxial quantum dots (QDs) as single photon sources. Strain-free, monodisperse, and spatially sparse local-droplet-etched (LDE) QDs have recently been demonstrated as a superior alternative to traditional Stranski-Krastanov QDs. However, integration of LDE QDs into nanophotonic architectures with the ability to scale to many interacting QDs is yet to be demonstrated. We present a potential solution by embedding isolated LDE GaAs QDs within an Al0.4Ga0.6As Huygens’ metasurface with spectrally overlapping fundamental electric and magnetic dipolar resonances. We demonstrate for the first time a position- and size-independent, 1 order of magnitude increase in the collection efficiency and emission lifetime control for single-photon emission from LDE QDs embedded within the Huygens’ metasurfaces. Our results represent a significant step toward leveraging the advantages of LDE QDs within nanophotonic architectures to meet the scalability demands of photonic QIS.
Kim, Anthony D.; Curwen, Christopher A.; Wu, Yu; Reno, John L.; Addamane, Sadhvikas J.; Williams, Benjamin S.
Terahertz (THz) external-cavity lasers based on quantum-cascade (QC) metasurfaces are emerging as widely-tunable, single-mode sources with the potential to cover the 1--6 THz range in discrete bands with milliwatt-level output power. By operating on an ultra-short cavity with a length on the order of the wavelength, the QC vertical-external-cavity surface-emitting-laser (VECSEL) architecture enables continuous, broadband tuning while producing high quality beam patterns and scalable power output. The methods and challenges for designing the metasurface at different frequencies are discussed. As the QC-VECSEL is scaled below 2 THz, the primary challenges are reduced gain from the QC active region, increased metasurface quality factor and its effect on tunable bandwidth, and larger power consumption due to a correspondingly scaled metasurface area. At frequencies above 4.5 THz, challenges arise from a reduced metasurface quality factor and the excess absorption that occurs from proximity to the Reststrahlen band. The results of four different devices — with center frequencies 1.8 THz, 2.8 THz, 3.5 THz, and 4.5 THz — are reported. Each device demonstrated at least 200 GHz of continuous single-mode tuning, with the largest being 650 GHz around 3.5 THz. The limitations of the tuning range are well modeled by a Fabry-Pérot cavity which accounts for the reflection phase of the metasurface and the effect of the metasurface quality factor on laser threshold. Lastly, the effect of different output couplers on device performance is studied, demonstrating a significant trade-off between the slope efficiency and tuning bandwidth.