A Microfabricated Ion Trap for Microwave Induced Ion Interactions [PowerPoint]
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
2014 IEEE 40th Photovoltaic Specialist Conference, PVSC 2014
Microsystems Enabled Photovoltaics (MEPV) is a relatively new field that uses microsystems tools and manufacturing techniques familiar to the semiconductor industry to produce microscale photovoltaic cells. The miniaturization of these PV cells creates new possibilities in system designs that can be used to reduce costs, enhance functionality, improve reliability, or some combination of all three. In this article, we introduce analytical tools and techniques to estimate the costs associated with a hybrid concentrating photovoltaic system that uses multi-junction microscale photovoltaic cells and miniaturized concentrating optics for harnessing direct sunlight, and an active c-Si substrate for collecting diffuse sunlight. The overall model comprises components representing costs and profit margin associated with the PV cells, concentrating optics, balance of systems, installation, and operation. This article concludes with an analysis of the component costs with particular emphasis on the microscale PV cell costs and the associated tradeoffs between cost and performance for the hybrid CPV design.
Abstract not provided.
Abstract not provided.
After years in the field, many materials suffer degradation, off-gassing, and chemical changes causing build-up of measurable chemical atmospheres. Stand-alone embedded chemical sensors are typically limited in specificity, require electrical lines, and/or calibration drift makes data reliability questionable. Along with size, these "Achilles' heels" have prevented incorporation of gas sensing into sealed, hazardous locations which would highly benefit from in-situ analysis. We report on development of an all-optical, mid-IR, fiber-optic based MEMS Photoacoustic Spectroscopy solution to address these limitations. Concurrent modeling and computational simulation are used to guide hardware design and implementation.
IEEE Journal of Photovoltaics
Microsystems-enabled photovoltaics (MEPV) has great potential to meet the increasing demands for light-weight, photovoltaic solutions with high power density and efficiency. This paper describes effective failure analysis techniques to localize and characterize nonfunctional or underperforming MEPV cells. The defect localization methods such as electroluminescence under forward and reverse bias, as well as optical beam induced current using wavelengths above and below the device band gap, are presented. The current results also show that the MEPV has good resilience against degradation caused by reverse bias stresses. © 2013 IEEE.
Abstract not provided.
IEEE International Reliability Physics Symposium Proceedings
Microsystems-enabled photovoltaic (MEPV) technology is a promising approach to lower the cost of solar energy to competitive levels. This paper describes current development efforts to leverage existing silicon integrated circuit (IC) failure analysis (FA) techniques to study MEPV devices. Various FA techniques such as light emission microscopy and laser-based fault localization were used to identify and characterize primary failure modes after fabrication and packaging. The FA results provide crucial information used in provide corrective actions and improve existing MEPV fabrication techniques. © 2013 IEEE.
Progress in Photovoltaics: Research and Applications
Back-contacted, ultrathin (<10 μm), and submillimeter-sized solar cells made with microsystem tools are a new type of cell that has not been optimized for performance. The literature reports efficiencies up to 15% using thicknesses of 14 μm and cell sizes of 250 μm. In this paper, we present the design, conditions, and fabrication parameters necessary to optimize these devices. The optimization was performed using commercial simulation tools from the microsystems arena. A systematic variation of the different parameters that influence the performance of the cell was accomplished. The researched parameters were resistance, Shockley-Read-Hall (SRH) lifetime, contact separation, implant characteristics (size, dosage, energy, and ratio between the species), contact size, substrate thickness, surface recombination, and light concentration. The performance of the cell was measured with efficiency, open-circuit voltage, and short-circuit current. Among all the parameters investigated, surface recombination and SRH lifetime proved to be the most important. Through completing the simulations, an optimized concept solar cell design was introduced for two scenarios: high and low quality materials/passivation. Simulated efficiencies up to 23.4% (1 sun) and 26.7% (100 suns) were attained for 20-μm-thick devices. Copyright © 2012 John Wiley & Sons, Ltd. Back-contacted, ultrathin (<10 μm), and submillimeter-sized solar cells made with microsystem tools are a new type of cell that has not been optimized for performance. In this paper, we present the design conditions and fabrication parameters necessary to optimize these devices via simulations. Through completing the simulations, an optimized concept solar cell design was introduced for two scenarios: high and low quality materials/passivation. Simulated efficiencies up to 23.4% (1 sun) and 26.7% (100 suns) were attained for 20-μm-thick devices. Copyright © 2012 John Wiley & Sons, Ltd.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Conference Record of the IEEE Photovoltaic Specialists Conference
We present ultra-thin single crystal mini-modules built with specific power of 450 W/kg capable of voltages of >1000 V/cm2. These modules are also ultra-flexible with tight bending radii down to 1 mm. The module is composed of hundreds of back contact microcells with thicknesses of approximately 20 μm and diameters between 500-720 μm. The cells are interconnected to a flexible circuit through solder contacts. We studied the characteristics of several mini-modules through optical inspection, evaluation of quantum efficiency, measurement of current-voltage curves, and temperature dependence. Major efficiency losses are caused by missing cells or non-interconnected cells. Secondarily, damage incurred during separation of 500 μm cells from the substrate caused material detachment. The detachment induced higher recombination and low performance. Modules made with the larger cells (720 μm) performed better due to having no missing cells, no material detachment and optimized AR coatings. The conversion efficiency of the best mini module was 13.75% with a total Voc = 7.9 V. © 2013 IEEE.
Abstract not provided.
ECS Transactions
Microsystem technologies have the potential to significantly improve the performance, reduce the cost, and extend the capabilities of solar power systems. These benefits are possible due to a number of significant beneficial scaling effects within solar cells, modules, and systems that are manifested as the size of solar cells decrease to the sub-millimeter range. To exploit these benefits, we are using advanced fabrication techniques to create solar cells from a variety of compound semiconductors and silicon that have lateral dimensions of 250 - 1000 μm and are 1 - 20 μm thick. These fabrication techniques come out of relatively mature microsystem technologies such as integrated circuits (IC) and microelectromechanical systems (MEMS) which provide added supply chain and scale-up benefits compared to even incumbent PV technologies. © The Electrochemical Society.
Conference Record of the IEEE Photovoltaic Specialists Conference
We present ultra-thin single crystal mini-modules built with specific power of 450 W/kg capable of voltages of >1000 V/cm2. These modules are also ultra-flexible with tight bending radii down to 1 mm. The module is composed of hundreds of back contact microcells with thicknesses of approximately 20 μm and diameters between 500-720 μm. The cells are interconnected to a flexible circuit through solder contacts. We studied the characteristics of several mini-modules through optical inspection, evaluation of quantum efficiency, measurement of current-voltage curves, and temperature dependence. Major efficiency losses are caused by missing cells or non-interconnected cells. Secondarily, damage incurred during separation of 500 μm cells from the substrate caused material detachment. The detachment induced higher recombination and low performance. Modules made with the larger cells (720 μm) performed better due to having no missing cells, no material detachment and optimized AR coatings. The conversion efficiency of the best mini module was 13.75% with a total Voc = 7.9 V. © 2013 IEEE.
Abstract not provided.
Abstract not provided.
Abstract not provided.