Publications

Results 26–50 of 63

Search results

Jump to search filters

Carbon Composite Microelectromechanical Systems (CMEMS)

Dyck, Christopher D.; Washburn, Cody M.; Rector, Michael N.; Finnegan, Patrick S.; Pfeifer, Kent B.; Laros, James H.; Blecke, Jill B.; Satches, Michael R.; Massey, Lee T.

Pyrolyzed carbon as a mechanical material is promising for applications in harsh environments. In this work, we characterized the material and developed novel processes for fabricating carbon composite micro-electromechanical systems (CMEMS) structures. A novel method of increasing Young's modulus and the conductivity of pyrolyzed AZ 4330 was demonstrated by loading the films with graphene oxide prior to pyrolysis. By incorporating 2 wt.% graphene stiffeners into the film, a 65% increase in Young's modulus and 11% increase in conductivity were achieved. By reactive ion etching pyrolyzed blanket AZ 50XT thick film photoresist, a high aspect ratio process was demonstrated with films >7.5um thick. Two novel multi-level, volume-scalable CMEMS processes were developed on 6" diameter wafers. Young's modulus of 23 GPa was extracted from nanoindentation measurements of pyrolyzed AZ 50XT films. The temperature-dependent resistance was characterized from room temperature to 500C and found to be nearly linear over this range. By fitting the results of self-heated bridges in an inert ambient, we calculated that the bridges survived to 1000C without failure. Transmission electron microscopy (TEM) results showed the film to be largely amorphous, containing some sub-micrometer sized graphite crystallites. This was consistent with our Raman analysis, which also showed the film to be largely sp2 bonded. The calculated average density of pyrolyzed AZ 4330 films was 1.32 g/cm2. Thin level of disorder and the conductivity of thin film resistors were found to unchanged by 2Mrad gamma irradiation from a Co60 source. Thin film pyrolyzed carbon resistors were hermetically sealed in a nitrogen ambient in 24-pin dual in-line packages (DIP's). The resistance was measured periodically and remained constant over 6 months' time.

More Details

Novel Materials and Devices for Solid-State Neutron Detection

Manginell, Ronald P.; Pfeifer, Kent B.

There is a need in many fields, such as nuclear medicine, non-proliferation, energy exploration, national security, homeland security, nuclear energy, etc, for miniature, thermal neutron detectors. Until recently, thermal neutron detection has required physically large devices to provide sufficient neutron interaction and transduction signal. Miniaturization would allow broader use in the fields just mentioned and open up other applications potentially. Recent research shows promise in creating smaller neutron detectors through the combination of high-neutron-cross-section converter materials and solid-state devices. Yet, till recently it is difficult to measure low neutron fluxes by solidstate means given the need for optimized converter materials (purity, chemical composition and thickness) and a lack of designs capable of efficient transduction of the neutron conversion products (x-rays, electrons, gamma rays). Gadolinium-based semiconductor heterojunctions have detected electrons produced by Gd-neutron reactions but only at high neutron fluxes. One of the main limitations to this type of approach is the use of thin converter layers and the inability to utilize all the conversion products. In this LDRD we have optimized the converter material thickness and chemical composition to improve capture of conversion electrons and have detected thermal neutrons with high fidelity at low flux. We are also examining different semiconductor materials and converter materials to attempt to capture a greater percentage of the conversion electrons, both low and higher energy varieties. We have studied detector size and bias scaling, and cross-sensitivity to xrays and shown that we can detect low fluxes of thermal neutrons in less than 30 minutes with high selectivity by our approach. We are currently studying improvements in performance with direct placement of the Gd converter on the detector. The advancement of sensitive, miniature neutron detectors will have benefits in energy production, nonproliferation and medicine.

More Details

Detecting trihalomethanes using nanoporous-carbon coated surface-acoustic-wave sensors

Journal of the Electrochemical Society

Siegal, Michael P.; Mowry, Curtis D.; Pfeifer, Kent B.; Sava Gallis, Dorina F.

We study nanoporous-carbon (NPC) grown via pulsed laser deposition (PLD) as a sorbent coating on 96.5-MHz surface-acousticwave (SAW) devices to detect trihalomethanes (THMs), regulated byproducts from the chemical treatment of drinking water. Using both insertion-loss and isothermal-response measurements from known quantities of chloroform, the highest vapor pressure THM, we optimize the NPC mass-density at 1.05 ± 0.08 g/cm3 by controlling the background argon pressure during PLD. Precise THM quantities in a chlorobenzene solvent are directly injected into a separation column and detected as the phase-angle shift of the SAW device output compared to the drive signal. Using optimized NPC-coated SAWs, we study the chloroform response as a function of operating temperatures ranging from 10.50°C. Finally, we demonstrate individual responses from complex mixtures of all four THMs, with masses ranging from 10.2000 ng, after gas chromatography separation. Estimates for each THM detection limit using a simple peak-height response evaluation are 4.4 ng for chloroform and 1 ng for bromoform; using an integrated-peak area response analysis improves the detection limits to 0.73 ng for chloroform and 0.003 ng bromoform.

More Details

Modeling of ESD events from polymeric surfaces

Pfeifer, Kent B.

Transient electrostatic discharge (ESD) events are studied to assemble a predictive model of discharge from polymer surfaces. An analog circuit simulation is produced and its response is compared to various literature sources to explore its capabilities and limitations. Results suggest that polymer ESD events can be predicted to within an order of magnitude. These results compare well to empirical findings from other sources having similar reproducibility.

More Details

Development of MEMS photoacoustic spectroscopy

Eichenfield, Matthew S.; Givler, R.C.; Pfeifer, Kent B.; Reinke, Charles M.; Robinson, Alex L.; Resnick, Paul J.; Griffin, Benjamin G.; Langlois, Eric L.; Nielson, Gregory N.; Okandan, Murat O.; Shaw, Michael S.

After years in the field, many materials suffer degradation, off-gassing, and chemical changes causing build-up of measurable chemical atmospheres. Stand-alone embedded chemical sensors are typically limited in specificity, require electrical lines, and/or calibration drift makes data reliability questionable. Along with size, these "Achilles' heels" have prevented incorporation of gas sensing into sealed, hazardous locations which would highly benefit from in-situ analysis. We report on development of an all-optical, mid-IR, fiber-optic based MEMS Photoacoustic Spectroscopy solution to address these limitations. Concurrent modeling and computational simulation are used to guide hardware design and implementation.

More Details

Genomics-enabled sensor platform for rapid detection of viruses related to disease outbreak

Brozik, Susan M.; Polsky, Ronen P.; Campbell, DeAnna M.; Manginell, Ronald P.; Moorman, Matthew W.; Edwards, Thayne L.; Anderson, John M.; Pfeifer, Kent B.; Branch, Darren W.; Wheeler, David R.

More Details

Surface plasmon sensing of gas phase contaminants using optical fiber

Pfeifer, Kent B.; Thornberg, Steven M.; White, Michael I.

Fiber-optic gas phase surface plasmon resonance (SPR) detection of several contaminant gases of interest to state-of-health monitoring in high-consequence sealed systems has been demonstrated. These contaminant gases include H{sub 2}, H{sub 2}S, and moisture using a single-ended optical fiber mode. Data demonstrate that results can be obtained and sensitivity is adequate in a dosimetric mode that allows periodic monitoring of system atmospheres. Modeling studies were performed to direct the design of the sensor probe for optimized dimensions and to allow simultaneous monitoring of several constituents with a single sensor fiber. Testing of the system demonstrates the ability to detect 70mTorr partial pressures of H{sub 2} using this technique and <280 {micro}Torr partial pressures of H{sub 2}S. In addition, a multiple sensor fiber has been demonstrated that allows a single fiber to measure H{sub 2}, H{sub 2}S, and H{sub 2}O without changing the fiber or the analytical system.

More Details

Mass sensitive, Lorentz-Force actuated, MEMS preconcentrator and chemical sensor

ECS Transactions

Manginell, Ronald P.; Adkins, Douglas R.; Moorman, Matthew W.; Hadizadeh, Rameen; Copic, Davor; Porter, Daniel; Anderson, John M.; Wheeler, David R.; Pfeifer, Kent B.; Rumpf, Arthur

The mass-sensitive smart preconcentrator (SPC) consists of a Lorentz-Force-actuated MEMS resonator with an integral heater and surface coating for the collection of chemical analytes. Control circuitry is used to drive the SPC to resonance and measure its oscillation frequency. The frequency shift produced by adsorption of analyte on the SPC surface is inversely proportional to the mass of analyte collected. Thus, the SPC can measure when it has collected sufficient analyte for a downstream detection system. The limit of detection (LOD) of the SPC is less than 50 ppb for DMMP (dimethyl-methyl- phosphonate). At 1 ppm, less than 1 second collection of DMMP is sufficient to trigger analysis. An analytical model of operation of the SPC is used to predict the motion of the paddle and the shear modulus of silicon. © The Electrochemical Society.

More Details

Developing a laser-based ionization approach for detecting explosives with ion mobility spectrometry

Optics InfoBase Conference Papers

Headrick, Jeffrey M.; Reichardt, Thomas A.; Bambha, Ray B.; Kelley, Jude A.; Pfeifer, Kent B.; Bouchier, Francis A.

Rotationally resolved resonance-enhanced multiphoton ionization (REMPI) spectra of the NO photofragment from nitrobenzene have been observed for the A 2Σ+-X 2Π (1, 0) transition. These spectra were collected in an atmospheric-pressure nitrogen bath. © 2007 Optical Society of America.

More Details

Macro-meso-microsystems integration in LTCC : LDRD report

Rohde, Steven B.; Okandan, Murat O.; Pfeifer, Kent B.; De Smet, Dennis J.; Patel, Kamlesh P.; Ho, Clifford K.; Nordquist, Christopher N.; Walker, Charles A.; Rohrer, Brandon R.; Buerger, Stephen B.; Turner, Timothy S.; Wroblewski, Brian W.

Low Temperature Cofired Ceramic (LTCC) has proven to be an enabling medium for microsystem technologies, because of its desirable electrical, physical, and chemical properties coupled with its capability for rapid prototyping and scalable manufacturing of components. LTCC is viewed as an extension of hybrid microcircuits, and in that function it enables development, testing, and deployment of silicon microsystems. However, its versatility has allowed it to succeed as a microsystem medium in its own right, with applications in non-microelectronic meso-scale devices and in a range of sensor devices. Applications include silicon microfluidic ''chip-and-wire'' systems and fluid grid array (FGA)/microfluidic multichip modules using embedded channels in LTCC, and cofired electro-mechanical systems with moving parts. Both the microfluidic and mechanical system applications are enabled by sacrificial volume materials (SVM), which serve to create and maintain cavities and separation gaps during the lamination and cofiring process. SVMs consisting of thermally fugitive or partially inert materials are easily incorporated. Recognizing the premium on devices that are cofired rather than assembled, we report on functional-as-released and functional-as-fired moving parts. Additional applications for cofired transparent windows, some as small as an optical fiber, are also described. The applications described help pave the way for widespread application of LTCC to biomedical, control, analysis, characterization, and radio frequency (RF) functions for macro-meso-microsystems.

More Details

Detection of carbon monoxide (CO) as a furnace byproduct using a rotating mask spectrometer

Pfeifer, Kent B.; Sinclair, Michael B.

Sandia National Laboratories, in partnership with the Consumer Product Safety Commission (CPSC), has developed an optical-based sensor for the detection of CO in appliances such as residential furnaces. The device is correlation radiometer based on detection of the difference signal between the transmission spectrum of the sample multiplied by two alternating synthetic spectra (called Eigen spectra). These Eigen spectra are derived from a priori knowledge of the interferents present in the exhaust stream. They may be determined empirically for simple spectra, or using a singular value decomposition algorithm for more complex spectra. Data is presented on the details of the design of the instrument and Eigen spectra along with results from detection of CO in background N{sub 2}, and CO in N{sub 2} with large quantities of interferent CO{sub 2}. Results indicate that using the Eigen spectra technique, CO can be measured at levels well below acceptable limits in the presence of strongly interfering species. In addition, a conceptual design is presented for reducing the complexity and cost of the instrument to a level compatible with consumer products.

More Details
Results 26–50 of 63
Results 26–50 of 63