Novel Pyrolyzed Carbon Processing and Applications
Abstract not provided.
Abstract not provided.
Abstract not provided.
2018 Solid-State Sensors, Actuators and Microsystems Workshop, Hilton Head 2018
The Defense Advanced Research Project Agency has identified a need for low-standby-power systems which react to physical environmental signals in the form of an electrical wakeup signal. To address this need, we design piezoelectric aluminum nitride based microelectromechanical resonant accelerometers that couple with a near-zero power, complementary metal-oxide-semiconductor application specific integrated circuit. The piezoelectric accelerometer operates near resonance to form a passive mechanical filter of the vibration spectrum that targets a specific frequency signature. Resonant vibration sensitivities as large as 490 V/g (in air) are obtained at frequencies as low as 43 Hz. The integrated circuit operates in the subthreshold regime employing current starvation to minimize power consumption. Two accelerometers are coupled with the circuit to form the wakeup system which requires only 5.25 nW before wakeup and 6.75 nW after wakeup. The system is shown to wake up to a generator signal and reject confusers in the form of other vehicles and background noise.
Proceedings of IEEE Sensors
The defense community desires low-power sensors deployed around critical assets for intrusion detection. A piezoelectric microelectromechanical accelerometer is coupled with a complementary metal-oxide-semiconductor comparator to create a near-zero power wakeup system. The accelerometer is designed to operate at resonance and employs aluminum nitride for piezoelectric transduction. At a target frequency of 160 Hz, the accelerometer achieves sensitivities as large as 26 V/g. The system is shown to require only 5.4 nW of power before and after latching. The combined system is shown to wake up to a target frequency signature of a generator while rejecting background noise as well as non-target frequency signatures.
Pyrolyzed carbon as a mechanical material is promising for applications in harsh environments. In this work, we characterized the material and developed novel processes for fabricating carbon composite micro-electromechanical systems (CMEMS) structures. A novel method of increasing Young's modulus and the conductivity of pyrolyzed AZ 4330 was demonstrated by loading the films with graphene oxide prior to pyrolysis. By incorporating 2 wt.% graphene stiffeners into the film, a 65% increase in Young's modulus and 11% increase in conductivity were achieved. By reactive ion etching pyrolyzed blanket AZ 50XT thick film photoresist, a high aspect ratio process was demonstrated with films >7.5um thick. Two novel multi-level, volume-scalable CMEMS processes were developed on 6" diameter wafers. Young's modulus of 23 GPa was extracted from nanoindentation measurements of pyrolyzed AZ 50XT films. The temperature-dependent resistance was characterized from room temperature to 500C and found to be nearly linear over this range. By fitting the results of self-heated bridges in an inert ambient, we calculated that the bridges survived to 1000C without failure. Transmission electron microscopy (TEM) results showed the film to be largely amorphous, containing some sub-micrometer sized graphite crystallites. This was consistent with our Raman analysis, which also showed the film to be largely sp2 bonded. The calculated average density of pyrolyzed AZ 4330 films was 1.32 g/cm2. Thin level of disorder and the conductivity of thin film resistors were found to unchanged by 2Mrad gamma irradiation from a Co60 source. Thin film pyrolyzed carbon resistors were hermetically sealed in a nitrogen ambient in 24-pin dual in-line packages (DIP's). The resistance was measured periodically and remained constant over 6 months' time.
Graphene possesses excellent mechanical properties with a tensile strength that may exceed 130 GPa, excellent electrical conductivity, and good thermal properties. Future nano-composites can leverage many of these material properties in an attempt to build designer materials for a broad range of applications. 3-D printing has also seen vast improvements in recent years that have allowed many companies and individuals to realize rapid prototyping for relatively low capital investment. This research sought to create a graphene reinforced, polymer matrix nano-composite that is viable in commercial 3D printer technology, study the effects of ultra-high loading percentages of graphene in polymer matrices and determine the functional upper limit for loading. Loadings varied from 5 wt. % to 50 wt. % graphene nanopowder loaded in Acrylonitrile Butadiene Styrene (ABS) matrices. Loaded sample were characterized for their mechanical properties using three point bending, tensile tests, as well as dynamic mechanical analysis.
The objectives of the project was to create a graphene reinforced polymer nano-composite viable in a commercial 3-D printer; study the effects of ultra-high loading of graphene in polymer matrices; and determine the functional upper limit of graphene loading.
Abstract not provided.
Abstract not provided.