Publications

Results 26–50 of 275

Search results

Jump to search filters

UQTk Version 3.1.1 User Manual

Sargsyan, Khachik S.; Safta, Cosmin S.; Johnston, Katherine J.; Khalil, Mohammad K.; Chowdhary, Kamaljit S.; Rai, Prashant; Casey, Tiernan A.; Boll, Luke D.; Zeng, Xiaoshu; Debusschere, Bert D.

The UQ Toolkit (UQTk) is a collection of libraries and tools for the quantification of uncertainty in numerical model predictions. Version 3.1.1 offers intrusive and non-intrusive methods for propagating input uncertainties through computational models, tools for sensitivity analysis, methods for sparse surrogate construction, and Bayesian inference tools for inferring parameters from experimental data. This manual discusses the download and installation process for UQTk, provides pointers to the UQ methods used in the toolkit, and describes some of the examples provided with the toolkit.

More Details

Exploration of multifidelity UQ sampling strategies for computer network applications

International Journal for Uncertainty Quantification

Geraci, Gianluca G.; Crussell, Jonathan C.; Swiler, Laura P.; Debusschere, Bert D.

Network modeling is a powerful tool to enable rapid analysis of complex systems that can be challenging to study directly using physical testing. Two approaches are considered: emulation and simulation. The former runs real software on virtualized hardware, while the latter mimics the behavior of network components and their interactions in software. Although emulation provides an accurate representation of physical networks, this approach alone cannot guarantee the characterization of the system under realistic operative conditions. Operative conditions for physical networks are often characterized by intrinsic variability (payload size, packet latency, etc.) or a lack of precise knowledge regarding the network configuration (bandwidth, delays, etc.); therefore uncertainty quantification (UQ) strategies should be also employed. UQ strategies require multiple evaluations of the system with a number of evaluation instances that roughly increases with the problem dimensionality, i.e., the number of uncertain parameters. It follows that a typical UQ workflow for network modeling based on emulation can easily become unattainable due to its prohibitive computational cost. In this paper, a multifidelity sampling approach is discussed and applied to network modeling problems. The main idea is to optimally fuse information coming from simulations, which are a low-fidelity version of the emulation problem of interest, in order to decrease the estimator variance. By reducing the estimator variance in a sampling approach it is usually possible to obtain more reliable statistics and therefore a more reliable system characterization. Several network problems of increasing difficulty are presented. For each of them, the performance of the multifidelity estimator is compared with respect to the single fidelity counterpart, namely, Monte Carlo sampling. For all the test problems studied in this work, the multifidelity estimator demonstrated an increased efficiency with respect to MC.

More Details

Advances in GDSA Framework Development and Process Model Integration

Mariner, Paul M.; Nole, Michael A.; Basurto, Eduardo B.; Berg, Timothy M.; Chang, Kyung W.; Debusschere, Bert D.; Eckert, Aubrey C.; Ebeida, Mohamed S.; Gross, Michael B.; Hammond, Glenn; Harvey, Jacob H.; Jordan, Spencer H.; Kuhlman, Kristopher L.; LaForce, Tara; Leone, Rosemary C.; McLendon, William C.; Mills, Melissa M.; Park, Heeho D.; Laros, James H.; Laros, James H.; Seidl, Daniel T.; David, Sevougian; Stein, Emily S.; Swiler, Laura P.

The Spent Fuel and Waste Science and Technology (SFWST) Campaign of the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE), Office of Spent Fuel & Waste Disposition (SFWD) is conducting research and development (R&D) on geologic disposal of spent nuclear fuel (SNF) and highlevel nuclear waste (HLW). A high priority for SFWST disposal R&D is to develop a disposal system modeling and analysis capability for evaluating disposal system performance for nuclear waste in geologic media. This report describes fiscal year (FY) 2020 advances of the Geologic Disposal Safety Assessment (GDSA) Framework and PFLOTRAN development groups of the SFWST Campaign. The common mission of these groups is to develop a geologic disposal system modeling capability for nuclear waste that can be used to probabilistically assess the performance of disposal options and generic sites. The capability is a framework called GDSA Framework that employs high-performance computing (HPC) capable codes PFLOTRAN and Dakota.

More Details

Surrogate Model Development of Spent Fuel Degradation for Repository Performance Assessment

Mariner, Paul M.; Berg, Timothy M.; Chang, Kyung W.; Debusschere, Bert D.; Leone, Rosemary C.; Seidl, Daniel T.

In model simulations of deep geologic repositories, UO2 fuel matrix degradation typically begins as soon as the waste package breaches and groundwater contacts the fuel surface. The initial degradation rate depends on the timing of these events, burnup of the fuel, temperature, and concentrations of dissolved reactants. Estimating the initial rate of degradation is fairly straightforward, but as UO2 corrosion products precipitate on the fuel surface and the movement of dissolved species between the fuel surface and environment is impeded by the precipitated solids, the rate is more difficult to quantify. At that point, calculating the degradation rate becomes a reactive-transport problem in which a large number of equations must be solved by iteration for a large number of grid cells at each time step. The consequence is that repository simulations, which are already expensive, become much more expensive, especially when hundreds or thousands of waste packages breach. The Fuel Matrix Degradation (FMD) model is the process model of the Spent Fuel and Waste Science and Technology (SFWST) campaign of the US Department of Energy (DOE). It calculates spent fuel degradation rates as a function of radiolysis, redox reactions, electrochemical reactions, alteration layer growth, and diffusion of reactants through the alteration layer. Like other similar fuel degradation process models, it is a complicated model requiring a large number of calculations and iterations at each time step.

More Details

Characterization of Partially Observed Epidemics - Application to COVID-19

Safta, Cosmin S.; Ray, Jaideep R.; Laros, James H.; Catanach, Thomas A.; Chowdhary, Kamaljit S.; Debusschere, Bert D.; Galvan, Edgar; Geraci, Gianluca G.; Khalil, Mohammad K.; Portone, Teresa P.

This report documents a statistical method for the "real-time" characterization of partially observed epidemics. Observations consist of daily counts of symptomatic patients, diagnosed with the disease. Characterization, in this context, refers to estimation of epidemiological parameters that can be used to provide short-term forecasts of the ongoing epidemic, as well as to provide gross information for the time-dependent infection rate. The characterization problem is formulated as a Bayesian inverse problem, and is predicated on a model for the distribution of the incubation period. The model parameters are estimated as distributions using a Markov Chain Monte Carlo (MCMC) method, thus quantifying the uncertainty in the estimates. The method is applied to the COVID-19 pandemic of 2020, using data at the country, provincial (e.g., states) and regional (e.g. county) levels. The epidemiological model includes a stochastic component due to uncertainties in the incubation period. This model-form uncertainty is accommodated by a pseudo-marginal Metropolis-Hastings MCMC sampler, which produces posterior distributions that reflect this uncertainty. We approximate the discrepancy between the data and the epidemiological model using Gaussian and negative binomial error models; the latter was motivated by the over-dispersed count data. For small daily counts we find the performance of the calibrated models to be similar for the two error models. For large daily counts the negative-binomial approximation is numerically unstable unlike the Gaussian error model. Application of the model at the country level (for the United States, Germany, Italy, etc.) generally provided accurate forecasts, as the data consisted of large counts which suppressed the day-to-day variations in the observations. Further, the bulk of the data is sourced over the duration before the relaxation of the curbs on population mixing, and is not confounded by any discernible country-wide second wave of infections. At the state-level, where reporting was poor or which evinced few infections (e.g., New Mexico), the variance in the data posed some, though not insurmountable, difficulties, and forecasts were able to capture the data with large uncertainty bounds. The method was found to be sufficiently sensitive to discern the flattening of the infection and epidemic curve due to shelter-in-place orders after around 90% quantile for the incubation distribution (about 10 days for COVID-19). The proposed model was also used at a regional level to compare the forecasts for the central and north-west regions of New Mexico. Modeling the data for these regions illustrated different disease spread dynamics captured by the model. While in the central region the daily counts peaked in the late April, in the north-west region the ramp-up continued for approximately three more weeks.

More Details

UQTk User Manual (V.3.1.0)

Sargsyan, Khachik S.; Safta, Cosmin S.; Johnston, Katherine J.; Khalil, Mohammad K.; Chowdhary, Kamaljit S.; Rai, Prashant R.; Casey, Tiernan A.; Zeng, Xiaoshu; Debusschere, Bert D.

The UQ Toolkit (UQTk) is a collection of libraries and tools for the quantification of uncertainty in numerical model predictions. Version 3.1.0 offers intrusive and non-intrusive methods for propagating input uncertainties through computational models, tools for sensitivity analysis, methods for sparse surrogate construction, and Bayesian inference tools for inferring parameters from experimental data. This manual discusses the download and installation process for UQTk, provides pointers to the UQ methods used in the toolkit, and describes some of the examples provided with the toolkit.

More Details

Progress in Deep Geologic Disposal Safety Assessment in the U.S. since 2010

Mariner, Paul M.; Connolly, Laura A.; Cunningham, Leigh C.; Debusschere, Bert D.; Dobson, David C.; Frederick, Jennifer M.; Hammond, Glenn E.; Jordan, Spencer H.; LaForce, Tara; Nole, Michael A.; Park, Heeho D.; Laros, James H.; Rogers, Ralph D.; Seidl, Daniel T.; Sevougian, Stephen D.; Stein, Emily S.; Swift, Peter N.; Swiler, Laura P.; Vo, Jonathan; Wallace, Michael G.

The Spent Fuel and Waste Science and Technology (SFWST) Campaign of the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE), Office of Spent Fuel & Waste Disposition (SFWD) is conducting research and development (R&D) on geologic disposal of spent nuclear fuel (SNF) and high-level nuclear waste (HLW). Two high priorities for SFWST disposal R&D are design concept development and disposal system modeling (DOE 2011, Table 6). These priorities are directly addressed in the SFWST Geologic Disposal Safety Assessment (GDSA) work package, which is charged with developing a disposal system modeling and analysis capability for evaluating disposal system performance for nuclear waste in geologic media.

More Details

Exploration of multifidelity approaches for uncertainty quantification in network applications

Proceedings of the 3rd International Conference on Uncertainty Quantification in Computational Sciences and Engineering, UNCECOMP 2019

Geraci, Gianluca G.; Swiler, Laura P.; Crussell, Jonathan C.; Debusschere, Bert D.

Communication networks have evolved to a level of sophistication that requires computer models and numerical simulations to understand and predict their behavior. A network simulator is a software that enables the network designer to model several components of a computer network such as nodes, routers, switches and links and events such as data transmissions and packet errors in order to obtain device and network level metrics. Network simulations, as many other numerical approximations that model complex systems, are subject to the specification of parameters and operative conditions of the system. Very often the full characterization of the system and their input is not possible, therefore Uncertainty Quantification (UQ) strategies need to be deployed to evaluate the statistics of its response and behavior. UQ techniques, despite the advancements in the last two decades, still suffer in the presence of a large number of uncertain variables and when the regularity of the systems response cannot be guaranteed. In this context, multifidelity approaches have gained popularity in the UQ community recently due to their flexibility and robustness with respect to these challenges. The main idea behind these techniques is to extract information from a limited number of high-fidelity model realizations and complement them with a much larger number of a set of lower fidelity evaluations. The final result is an estimator with a much lower variance, i.e. a more accurate and reliable estimator can be obtained. In this contribution we investigate the possibility to deploy multifidelity UQ strategies to computer network analysis. Two numerical configurations are studied based on a simplified network with one client and one server. Preliminary results for these tests suggest that multifidelity sampling techniques might be used as effective tools for UQ tools in network applications.

More Details
Results 26–50 of 275
Results 26–50 of 275