Publications

49 Results

Search results

Jump to search filters

A time-resolved, in-chamber x-ray pinhole imager for Z

Review of Scientific Instruments

Webb, Timothy J.; Gomez, Matthew R.; Ball, Christopher R.; Lake, Patrick; Ampleford, David J.; Maurer, Andrew J.; Presura, Radu

We have commissioned a new time-resolved, x-ray imaging diagnostic for the Z facility. The primary intended application is for diagnosing the stagnation behavior of Magnetized Liner Inertial Fusion (MagLIF) and similar targets. We have a variety of imaging systems at Z, both time-integrated and time-resolved, that provide valuable x-ray imaging information, but no system at Z up to this time provides a combined high-resolution imaging with multi-frame time resolution; this new diagnostic, called TRICXI for Time Resolved In-Chamber X-ray Imager, is meant to provide time-resolved spatial imaging with high resolution. The multi-frame camera consists of a microchannel plate camera. A key component to achieving the design goals is to place the instrument inside the Z vacuum chamber within 2 m of the load, which necessitates a considerable amount of x-ray shielding as well as a specially designed, independent vacuum system. A demonstration of the imaging capability for a series of MagLIF shots is presented. Predictions are given for resolution and relative image irradiance to guide experimenters in choosing the desired configuration for their experiments.

More Details

High-resolution imaging of warm x-ray sources with a Wolter optic on the Z Machine

Fein, Jeffrey R.; Ampleford, David J.; Vogel, J.K.; Kozioziemski, B.; Walton, C.C.; Wu, Ming; Ayers, J.; Ball, Christopher R.; Romaine, S.; Bell, Perry; Bourdon, Christopher; Bradley, Dalton A.; Bruni, R.; Gard, Paul D.; Highstrete, Clark; Kilaru, K.; Lake, Patrick; Maurer, Andrew J.; Pickworth, L.A.; Pivovaroff, M.; Ramsey, B.; Ritter, Brian; Seals, Kathryn; Sethares, L.

Abstract not provided.

A Wolter imager on the Z machine to diagnose warm x-ray sources

Review of Scientific Instruments

Fein, Jeffrey R.; Ampleford, David J.; Vogel, J.K.; Kozioziemski, B.; Walton, C.C.; Wu, Ming; Ames, A.; Ayers, J.; Ball, Christopher R.; Bell, P.; Bourdon, Christopher; Bradley, D.; Bruni, R.; Gard, Paul D.; Kilaru, K.; Lake, Patrick; Maurer, Andrew J.; Pickworth, L.A.; Pivovaroff, M.J.; Ramsey, B.; Roberts, O.J.; Romaine, S.; Sullivan, Michael A.; Kirtley, Christopher K.; Johnson, Drew; Nielsen-Weber, L.B.

A new Wolter x-ray imager has been developed for the Z machine to study the emission of warm (>15 keV) x-ray sources. A Wolter optic has been adapted from observational astronomy and medical imaging, which uses curved x-ray mirrors to form a 2D image of a source with 5 × 5 × 5 mm3 field-of-view and measured 60-300-μm resolution on-axis. The mirrors consist of a multilayer that create a narrow bandpass around the Mo Kα lines at 17.5 keV. We provide an overview of the instrument design and measured imaging performance. In addition, we present the first data from the instrument of a Mo wire array z-pinch on the Z machine, demonstrating improvements in spatial resolution and a 350-4100× increase in the signal over previous pinhole imaging techniques.

More Details

A compact multi-plane broadband (0.5-17 keV) spectrometer using a single acid phthalate crystal

Review of Scientific Instruments

Loisel, Guillaume P.; Lake, Patrick; Nielsen-Weber, L.B.; Wu, Ming; Dunham, G.S.; Bailey, James E.; Rochau, G.A.

Acid phthalate crystals such as KAP crystals are a method of choice to record x-ray spectra in the soft x-ray regime (E ∼ 1 keV) using the large (001) 2d = 26.63 Å spacing. Reflection from many other planes is possible, and knowledge of the 2d spacing, reflectivity, and resolution for these reflections is necessary to evaluate whether they hinder or help the measurements. Burkhalter et al. [J. Appl. Phys., 52, 4379 (1981)] showed that the (013) reflection has efficiency comparable to the 2nd order reflection (002), and it can overlap the main first order reflection when the crystal bending axis (b-axis) is contained in the dispersion plane, thus contaminating the main (001) measurement in a convex crystal geometry. We present a novel spectrograph concept that makes these asymmetric reflections helpful by setting the crystal b-axis perpendicular to the dispersion plane. In such a case, asymmetric reflections do not overlap with the main (001) reflection and each reflection can be used as an independent spectrograph. Here we demonstrate an achieved spectral range of 0.8-13 keV with a prototype setup. The detector measurements were reproduced with a 3D ray-tracing code.

More Details

A Wolter Imager on the Z Machine to Diagnose Warm X-ray Sources

Fein, Jeffrey R.; Ampleford, David J.; Vogel, Julia; Kozioziemski, Bernie; Walton, Christopher; Wu, Ming; Ames, Andrew; Ayers, J.; Ball, Christopher R.; Bell, Perry; Bourdon, Christopher; Bradley, David; Bruni, R.; Gard, Paul D.; Kilaru, K.; Lake, Patrick; Maurer, Andrew J.; Pickworth, Louisa; Pivovaroff, Michael; Ramsey, Brian; Roberts, Oliver; Romaine, Suzanne; Sullivan, Michael A.; Kirtley, Christopher K.

Abstract not provided.

A Wolter Imager on the Z Machine to Diagnose Warm X-ray Sources

Ampleford, David J.; Fein, Jeffrey R.; Vogel, J.K.; Kozioziemski, B.J.; Walton, C.C.; Wu, Ming; Ball, Christopher R.; A Ames, J.A.; Bell, P.; Bourdon, Christopher; D Bradley, R.B.; Dunham, G.S.; Gard, Paul D.; Johnson, Drew; Kilaru, K.; Lake, Patrick; Maurer, Andrew J.; Nielsen-Weber, L.B.; Pickworth, L.A.; Pivovaroff, M.J.; Ramsey, B.; Roberts, O.J.; Sullivan, Michael A.; Rochau, G.A.

Abstract not provided.

Engineering Design for Wolter Imaging Diagnostic on Z

Ball, Christopher R.; Ampleford, David J.; Gard, Paul D.; Maurer, Andrew J.; Bourdon, Christopher; Fein, Jeffrey R.; Wu, Ming; Lake, Patrick; Nielsen-Weber, L.B.; Dunham, G.S.; Johnson, Drew; Johns, Owen; Sullivan, Michael A.; Kirtley, Christopher K.; Kozioziemski, B.; Pickworth, L.A.; Vogel, J.K.; Pivovaroff, M.J.; Walton, C.C.; Ayers, J.; Bell, P.; Ramsey, B.; Romaine, S.

Abstract not provided.

Electrical and X-ray diagnostics on the NSTec 2-MA dense plasma focus system

IEEE International Pulsed Power Conference

Savage, Mark E.; Johns, Owen; Garcia, Michael R.; Lake, Patrick; Moore, J.K.; Ormond, Eugene C.; Webb, Timothy J.; Bennett, N.; Gall, B.; Gardner, S.; Molnar, S.; Sipe, N.; Weber, T.; Olson, R.T.; Schmidt, A.

National Security Technologies (NSTec) is developing dense plasma focus (DPF) systems for applications requiring intense pulsed neutron sources. Sandia National Laboratories participated in a limited number of experiments with one of those systems. In collaboration with NSTec, Los Alamos National Laboratory, and Lawrence Livermore National Laboratory, we installed additional electrical and X-ray image measurements in parallel with normal operation of the system. Dense plasma focus machines have been studied for decades, but much of the experimental interest has been on neutron and X-ray yield. The primary goal for the present work was to develop and field high-fidelity and traceably-calibrated current and voltage measurements for comparison to digital simulations. The secondary goals were to utilize the current and voltage measurements to add general understanding of vacuum insulator behavior and current sheath dynamics. We also conducted initial scoping studies of soft X-ray diagnostics. We will show the electrical diagnostics and the techniques used to acquire high-fidelity signals in the difficult environment of the 2 MA, 6 μ plasma focus drive pulse. We will show how we measure accreted plasma mass non-invasively, and the sensitivity to background fill density. We will present initial qualitative results from filtered X-ray pinhole images and spectroscopic data from the pinch region.

More Details

Parallel operation of multiple closely spaced small aspect ratio rod pinches

IEEE Transactions on Plasma Science

Harper-Slaboszewicz, V.; Leckbee, Joshua; Bennett, Nichelle; Madrid, Elizabeth A.; Rose, David; Thoma, Carsten; Welch, Dale; Lake, Patrick; Mccourt, Andrew L.

A series of simulations and experiments to resolve questions about the operation of arrays of closely spaced small aspect ratio rod pinches has been performed. Design and postshot analysis of the experimental results are supported by 3-D particle-in-cell simulations. Both simulations and experiments support these conclusions. Penetration of current to the interior of the array appears to be efficient, as the current on the center rods is essentially equal to the current on the outer rods. Current loss in the feed due to the formation of magnetic nulls was avoided in these experiments by design of the feed surface of the cathode and control of the gap to keep the electric fields on the cathode below the emission threshold. Some asymmetry in the electron flow to the rod was observed, but the flow appeared to symmetrize as it reached the end of the rod. Interaction between the rod pinches can be controlled to allow the stable and consistent operation of arrays of rod pinches.

More Details

Pinned, optically aligned diagnostic dock for use on the Z facility

Review of Scientific Instruments

Gomez, Matthew R.; Rochau, G.A.; Bailey, James E.; Dunham, G.S.; Kernaghan, Matthew D.; Gard, P.; Robertson, G.K.; Owen, A.C.; Argo, Jeffrey W.; Nielsen, D.S.; Lake, Patrick

The pinned optically aligned diagnostic dock (PODD) is a multi-configuration diagnostic platform designed to measure x-ray emission on the Z facility. The PODD houses two plasma emission acquisition (PEA) systems, which are aligned with a set of precision machined pins. The PEA systems are modular, allowing a single diagnostic housing to support several different diagnostics. The PEA configurations fielded to date include both time-resolved and time-integrated, 1D spatially resolving, elliptical crystal spectrometers, and time-integrated, 1D spatially resolving, convex crystal spectrometers. Additional proposed configurations include time-resolved, monochromatic mirrored pinhole imagers and arrays of filtered x-ray diodes, diamond photo-conducting diode detectors, and bolometers. The versatility of the PODD system will allow the diagnostic configuration of the Z facility to be changed without significantly adding to the turn-around time of the machine. Additionally, the PODD has been designed to allow instrument setup to be completed entirely off-line, leaving only a refined alignment process to be performed just prior to a shot, which is a significant improvement over the instrument the PODD replaces. Example data collected with the PODD are presented. © 2012 American Institute of Physics.

More Details

Quantitative extraction of spectral line intensities and widths from x-ray spectra recorded with gated microchannel plate detectors

Review of Scientific Instruments

Dunham, Greg; Bailey, James E.; Rochau, G.A.; Lake, Patrick; Nielsen-Weber, L.B.

Plasma spectroscopy requires determination of spectral line intensities and widths. At Sandia National Laboratories Z facility we use elliptical crystal spectrometers equipped with gated microchannel plate detectors to record time and space resolved spectra. We collect a large volume of data typically consisting of five to six snapshots in time and five to ten spectral lines with 30 spatial elements per frame, totaling to more than 900 measurements per experiment. This large volume of data requires efficiency in processing. We have addressed this challenge by using a line fitting routine to automatically fit each spectrum using assumed line profiles and taking into account photoelectron statistics to efficiently extract line intensities and widths with uncertainties. We verified that the random data noise obeys Poisson statistics. Rescale factors for converting film exposure to effective counts required for understanding the photoelectron statistics are presented. An example of the application of these results to the analysis of spectra recorded in Z experiments is presented. © 2007 American Institute of Physics.

More Details

Twin-elliptical-crystal time- and space-resolved soft x-ray spectrometer

Review of Scientific Instruments

Lake, Patrick; Bailey, James E.; Rochau, G.A.; Gard, P.; Petmecky, D.; Bump, M.; Joseph, N.R.; Moore, T.C.; Nielsen-Weber, L.B.

Elliptical crystal spectrometers equipped with time-gated microchannel plate (MCP) detectors provide time-, space-, and spectrally resolved data. A common problem is that the number of time resolution elements is limited by the number of MCP frames. The number of frames that fit on a given MCP is limited by the image size and the alignment tolerance. At the Z facility these problems have been addressed with twin-elliptical-crystal spectrometers. Using two crystals and detectors doubles the number of frames available. This enables measurements with ∼350 ps time resolution while still recording data from an ∼4 ns wide time window. Alternatively, the twin crystal design allows simultaneous measurements with different crystals to investigate different spectral regimes. © 2006 American Institute of Physics.

More Details

Time- and space-resolved spectroscopy of dynamic hohlraum interiors

Proposed for publication in the Journal of Quantitative Spectroscopy and Radiative Transfer.

Bailey, James E.; Chandler, Gordon A.; Rochau, G.A.; Slutz, Stephen A.; Lake, Patrick; Lemke, Raymond W.; Mehlhorn, Thomas A.

A dynamic hohlraum is created when an annular z-pinch plasma implodes onto a cylindrical 0.014 g/cc 6-mm-diameter CH{sub 2} foam. The impact launches a radiating shock that propagates toward the axis at {approx}350 {micro}m/ns. The radiation trapped by the tungsten z-pinch plasma forms a {approx}200 eV hohlraum that provides X-rays for indirect drive inertial confinement fusion capsule implosion experiments. We are developing the ability to diagnose the hohlraum interior using emission and absorption spectroscopy of Si atoms added as a tracer to the central portion of the foam. Time- and space-resolved Si spectra are recorded with an elliptical crystal spectrometer viewing the cylindrical hohlraum end-on. A rectangular aperture at the end of the hohlraum restricts the field of view so that the 1D spectrometer resolution corresponds approximately to the hohlraum radial direction. This enables distinguishing between spectra from the unshocked radiation-heated foam and from the shocked foam. Typical spectral lines observed include the Si Ly{alpha} with its He-like satellites and the He-like resonance sequence including He{alpha}, He{beta}, and He{gamma}, along with some of their associated Li-like satellites. Work is in progress to infer the hohlraum conditions using collisional-radiative modeling that accounts for the radiation environment and includes both opacity effects and detailed Stark broadening calculations. These 6-mm-scale radiation-heated plasmas might eventually also prove suitable for testing Stark broadening line profile calculations or for opacity measurements.

More Details

Z facility diagnostic system for high energy density physics at Sandia National Laboratories

Leeper, Ramon J.; Deeney, Christopher D.; Dunham, G.S.; Fehl, David L.; Franklin, James K.; Hanson, David L.; Hawn, Rona E.; Hall, Clint A.; Hurst, Michael J.; Jinzo, Tanya D.; Jobe, Daniel O.; Joseph, Nathan; Knudson, Marcus D.; Lake, Patrick; Lazier, Steven E.; Lucas, Joshua; McGurn, John S.; Manicke, Matthew P.; Mock, Raymond; Moore, Tracy C.; Nash, Thomas J.; Bailey, James E.; Nelson, Alan J.; Nielsen, D.S.; Olson, Richard E.; Porter, John L.; Pyle, John H.; Rochau, G.A.; Ruggles, Larry; Ruiz, Carlos L.; Sanford, Thomas W.L.; Seamen, Johann F.; Bennett, Guy R.; Simpson, Walter W.; Sinars, Daniel; Speas, Christopher S.; Stygar, William A.; Torres, Jose; Wenger, D.F.; Carlson, Alan L.; Chandler, Gordon A.; Cooper, Gary; Cuneo, Michael E.

Abstract not provided.

Crystal spectroscopy of silicon aero-gel end-caps driven by a dynamic hohlraum on Z

Proposed for publication in the Journal of Quantitative Spectroscopy and Radiative Transfer.

Nash, Thomas J.; McGurn, John S.; Schroen, Diana G.; Russell, Chris; Lake, Patrick; Jobe, Daniel O.; Gilliland, Terrance L.; Nielsen, D.S.; Lucas, Joshua; Moore, Tracy C.; Torres, Jose; Macfarlane, Joseph J.; Chrien, Robert E.; Idzorek, George C.; Watt, Robert G.; Leeper, Ramon J.; Sanford, Thomas W.L.; Mock, Raymond; Chandler, Gordon A.; Bailey, James E.; Mckenney, John; Mehlhorn, Thomas A.; Seamen, Johann F.

We present results from crystal spectroscopic analysis of silicon aero-gel foams heated by dynamic hohlraums on Z. The dynamic hohlraum on Z creates a radiation source with a 230-eV average temperature over a 2.4-mm diameter. In these experiments silicon aero-gel foams with 10-mg/cm{sup 3} densities and 1.7-mm lengths were placed on both ends of the dynamic hohlraum. Several crystal spectrometers were placed both above and below the z-pinch to diagnose the temperature of the silicon aero-gel foam using the K-shell lines of silicon. The crystal spectrometers were (1) temporally integrated and spatially resolved, (2) temporally resolved and spatially integrated, and (3) both temporally and spatially resolved. The results indicate that the dynamic hohlraum heats the silicon aero-gel to approximately 150-eV at peak power. As the dynamic hohlraum source cools after peak power the silicon aero-gel continues to heat and jets axially at an average velocity of approximately 50-cm/{micro}s. The spectroscopy has also shown that the reason for the up/down asymmetry in radiated power on Z is that tungsten enters the line-of-sight on the bottom of the machine much more than on the top.

More Details

Wavelength dependent measurements of optical fiber transit time, material dispersion, and attenuation

Journal of Applied Optics

Cochrane, Kyle; Bailey, James E.; Lake, Patrick; Carlson, Alan L.

A new method for measuring the wavelength dependence of the transit time, material dispersion, and attenuation of an optical fiber is described. The authors inject light from a 4-ns risetime pulsed broad-band flashlamp into various length fibers and record the transmitted signals with a time-resolved spectrograph. Segments of data spanning an approximately 3,000 {angstrom} range are recorded from a single flashlamp pulse. Comparison of data acquired with short and long fibers enables the determination of the transit time and the material dispersion as functions of wavelength dependence for the entire recorded spectrum simultaneously. The wavelength dependent attenuation is also determined from the signal intensities. The method is demonstrated with experiments using a step index 200-{micro}m-diameter SiO{sub 2} fiber. The results agree with the transit time determined from the bulk glass refractive index to within {+-} 0.035% for the visible (4,000--7,200 {angstrom}) spectrum and 0.12% for the ultraviolet (2,650--4,000 {angstrom}) spectrum, and with the attenuation specified by the fiber manufacturer to within {+-} 10%.

More Details

VUV absorption spectroscopy measurements of the role of fast neutral atoms in high-power gap breakdown

Physical Review E

Bailey, James E.; Cuneo, Michael E.; Lake, Patrick; Nash, Thomas J.; Noack, Donald D.

The maximum power achieved in a wide variety of high-power devices, including electron and ion diodes, z pinches, and microwave generators, is presently limited by anode-cathode gap breakdown. A frequently-discussed hypothesis for this effect is ionization of fast neutral atoms injected throughout the anode-cathode gap during the power pulse. The authors describe a newly-developed diagnostic tool that provides the first direct test of this hypothesis. Time-resolved vacuum-ultraviolet absorption spectroscopy is used to directly probe fast neutral atoms with 1 mm spatial resolution in the 10 mm anode-cathode gap of the SABRE 5 MV, 1 TW applied-B ion diode. Absorption spectra collected during Ar RF glow discharges and with CO{sub 2} gas fills confirm the reliability of the diagnostic technique. Throughout the 50--100 ns ion diode pulses no measurable neutral absorption is seen, setting upper limits of 0.12--1.5 x 10{sup 14} cm{sup {minus}3} for ground state fast neutral atom densities of H, C, N, O, F. The absence of molecular absorption bands also sets upper limits of 0.16--1.2 x 10{sup 15} cm{sup {minus}3} for common simple molecules. These limits are low enough to rule out ionization throughout the gap as a breakdown mechanism. This technique can now be applied to quantify the role of neutral atoms in other high-power devices.

More Details
49 Results
49 Results