A linear performance drop is generally assumed during the photovoltaic (PV) lifetime. However, operational data demonstrate that the PV module degradation rate (Rd) is often nonlinear, which, if neglected, may increase the financial uncertainty. Although nonlinear behavior has been the subject of numerous publications, it was only recently that statistical models able to detect change-points and extract multiple Rd values from PV performance time-series were introduced. A comparative analysis of six open-source libraries, which can detect change-points and calculate nonlinear Rd, is presented in this article. Since the real Rd and change-point locations are unknown in field data, 960 synthetic datasets from six locations and two PV module technologies have been generated using different aggregation and normalization decisions and nonlinear degradation rate patterns. The results demonstrated that coarser temporal aggregation (i.e., monthly vs. weekly), temperature correction, and both PV module technologies and climates with lower seasonality can benefit the change-point detection and Rd extraction. This also raises a concern that statistical models typically deployed for Rd analysis may be highly climatic-and technology-dependent. The comparative analysis of the six approaches demonstrated median mean absolute errors (MAE) ranging from 0.06 to 0.26%/year, given a maximum absolute Rd of 2.9%/year. The median MAE in change-point position detection varied from 3.5 months to 6 years.
Reverse engineering (RE) analysts struggle to address critical questions about the safety of binary code accurately and promptly, and their supporting program analysis tools are simply wrong sometimes. The analysis tools have to approximate in order to provide any information at all, but this means that they introduce uncertainty into their results. And those uncertainties chain from analysis to analysis. We hypothesize that exposing sources, impacts, and control of uncertainty to human binary analysts will allow the analysts to approach their hardest problems with high-powered analytic techniques that they know when to trust. Combining expertise in binary analysis algorithms, human cognition, uncertainty quantification, verification and validation, and visualization, we pursue research that should benefit binary software analysis efforts across the board. We find a strong analogy between RE and exploratory data analysis (EDA); we begin to characterize sources and types of uncertainty found in practice in RE (both in the process and in supporting analyses); we explore a domain-specific focus on uncertainty in pointer analysis, showing that more precise models do help analysts answer small information flow questions faster and more accurately; and we test a general population with domain-general sudoku problems, showing that adding "knobs" to an analysis does not significantly slow down performance. This document describes our explorations in uncertainty in binary analysis.
The Sandia-PRF has built a new capability for the low-temperature plasma community for the simultaneous imaging of molecular rotation/vibration nonequilibrium, electric field, and the distribution of OH radical and formaldehyde in reactive low temperature plasma systems. The system is currently investigating the plasma-assisted deflagration to detonation transition in a micro-combustor channel.