The error detection performance of cyclic redundancy check (CRC) codes combined with bit framing in digital serial communication systems is evaluated. Advantages and disadvantages of the combined method are treated in light of the probability of undetected errors. It is shown that bit framing can increase the burst error detection of the CRC but it can also adversely affect CRC random error detection performance. To quantify the effect of bit framing on CRC error detection the concept of error "exposure"is introduced. Our investigations lead us to propose resilient generator polynomials that, when combined with bit framing, can result in improved CRC error detection performance at no additional implementation cost. Example results are generated for short codewords showing that proper choice of CRC generator polynomial can improve error detection performance when combined with bit framing. The implication is that CRC combined with bit framing can reduce the probability of undetected errors even under high error rate conditions.
A high altitude electromagnetic pulse (HEMP) or other similar geomagnetic disturbance (GMD) has the potential to severely impact the operation of large-scale electric power grids. By introducing low-frequency common-mode (CM) currents, these events can impact the performance of key system components such as large power transformers. In this work, a solid-state transformer (SST) that can replace susceptible equipment and improve grid resiliency by safely absorbing these CM insults is described. An overview of the proposed SST power electronics and controls architecture is provided, a system model is developed, and the performance of the SST in response to a simulated CM insult is evaluated. Compared to a conventional magnetic transformer, the SST is found to recover quickly from the insult while maintaining nominal ac input/output behavior.
With the recent surge in big data analytics for hyperdimensional data, there is a renewed interest in dimensionality reduction techniques. In order for these methods to improve performance gains and understanding of the underlying data, a proper metric needs to be identified. This step is often overlooked, and metrics are typically chosen without consideration of the underlying geometry of the data. In this paper, we present a method for incorporating elastic metrics into the t-distributed stochastic neighbour embedding (t-SNE) and Uniform Manifold Approximation and Projection (UMAP). We apply our method to functional data, which is uniquely characterized by rotations, parameterization and scale. If these properties are ignored, they can lead to incorrect analysis and poor classification performance. Through our method, we demonstrate improved performance on shape identification tasks for three benchmark data sets (MPEG-7, Car data set and Plane data set of Thankoor), where we achieve 0.77, 0.95 and 1.00 F1 score, respectively.
Creation of a Sandia internally developed, shock-hardened Recoverable Data Recorder (RDR) necessitated experimentation by ballistically-firing the device into water targets at velocities up to 5,000 ft/s. The resultant mechanical environments were very severe—routinely achieving peak accelerations in excess of 200 kG and changes in pseudo-velocity greater than 38,000 inch/s. High-quality projectile deceleration datasets were obtained though high-speed imaging during the impact events. The datasets were then used to calibrate and validate computational models in both CTH and EPIC. Hydrodynamic stability in these environments was confirmed to differ from aerodynamic stability; projectile stability is maintained through a phenomenon known as “tail-slapping” or impingement of the rear of the projectile on the cavitation vapor-water interface which envelopes the projectile. As the projectile slows the predominate forces undergo a transition which is outside the codes’ capabilities to calculate accurately, however, CTH and EPIC both predict the projectile trajectory well in the initial hypervelocity regime. Stable projectile designs and the achievable acceleration space are explored through a large parameter sweep of CTH simulations. Front face chamfer angle has the largest influence on stability with low angles being more stable.
We study both conforming and non-conforming versions of the practical DPG method for the convection-reaction problem. We determine that the most common approach for DPG stability analysis - construction of a local Fortin operator - is infeasible for the convection-reaction problem. We then develop a line of argument based on a direct proof of discrete stability; we find that employing a polynomial enrichment for the test space does not suffice for this purpose, motivating the introduction of a (two-element) subgrid mesh. The argument combines mathematical analysis with numerical experiments.
An inherited containment vessel design that has been used in the past to contain items in an environmental testing unit was brought to the Explosives Applications Lab to be analyzed and modified. The goal was to modify the vessel to contain an explosive event of 4g TNT equivalence at least once without failure or significant girth expansion while maintaining a seal. A total of ten energetic tests were performed on multiple vessels. In these tests, the 7075-T6 aluminum vessels were instrumented with thin-film resistive strain gages and both static and dynamic pressure gauges to study its ability to withstand an oversize explosive charge of 8g. Additionally, high precision girth (pi tape) measurements were taken before and after each test to measure the plastic growth of the vessel due to the event. Concurrent with this explosive testing, hydrocode modeling of the containment vessel and charge was performed. The modeling results were shown to agree with the results measured in the explosive field testing. Based on the data obtained during this testing, this vessel design can be safely used at least once to contain explosive detonations of 8g at the center of the chamber for a charge that will not result in damaging fragments.
Holography is an effective diagnostic for the three-dimensional imaging of multiphase and particle-laden flows. Traditional digital inline holography (DIH), however, is subject to distortions from phase delays caused by index-of-refraction changes. This prevents DIH from being implemented in extreme conditions where shockwaves and significant thermal gradients are present. To overcome this challenge, multiple techniques have been developed to correct for the phase distortions. In this work, several holography techniques for distortion removal are discussed, including digital off-axis holography, phase conjugate digital in-line holography, and electric field techniques. Then, a distortion cancelling off-axis holography configuration is implemented for distortion removal and a high-magnification phase conjugate system is evaluated. Finally, both diagnostics are applied to study extreme pyrotechnic igniter environments.
With increasing penetration of variable renewable generation, battery energy storage systems (BESS) are becoming important for power system stability due to their operational flexibility. In this paper, we propose a method for determining the minimum BESS rated power that guarantees security constraints in a grid subject to disturbances induced by variable renewable generation. The proposed framework leverages sensitivity-based inverse uncertainty propagation where the dynamical responses of the states are parameterized with respect to random variables. Using this approach, the original nonlinear optimization problem for finding the security-constrained uncertainty interval may be formulated as a quadratically-constrained linear program. The resulting estimated uncertainty interval is utilized to find the BESS rated power required to satisfy grid stability constraints.
Two relatively under-reported facets of fuel storage fire safety are examined in this work for a 250, 000 gallon two-tank storage system. Ignition probability is linked to the radiative flux from a presumed fire. First, based on observed features of existing designs, fires are expected to be largely contained within a designed footprint that will hold the full spilled contents of the fuel. The influence of the walls and the shape of the tanks on the magnitude of the fire is not a well-described aspect of conventional fire safety assessment utilities. Various resources are herein used to explore the potential hazard for a contained fire of this nature. Second, an explosive attack on the fuel storage has not been widely considered in prior work. This work explores some options for assessing this hazard. The various methods for assessing the constrained conventional fires are found to be within a reasonable degree of agreement. This agreement contrasts with the hazard from an explosive dispersal. Best available assessment techniques are used, which highlight some inadequacies in the existing toolsets for making predictions of this nature. This analysis, using the best available tools, suggests the offset distance for the ignition hazard from a fireball will be on the same order as the offset distance for the blast damage. This suggests the buy-down of risk by considering the fireball is minimal when considering the blast hazards. Assessment tools for the fireball predictions are not particularly mature, and ways to improve them for a higher-fidelity estimate are noted.
Creation of a Sandia internally developed, shock-hardened Recoverable Data Recorder (RDR) necessitated experimentation by ballistically-firing the device into water targets at velocities up to 5,000 ft/s. The resultant mechanical environments were very severe—routinely achieving peak accelerations in excess of 200 kG and changes in pseudo-velocity greater than 38,000 inch/s. High-quality projectile deceleration datasets were obtained though high-speed imaging during the impact events. The datasets were then used to calibrate and validate computational models in both CTH and EPIC. Hydrodynamic stability in these environments was confirmed to differ from aerodynamic stability; projectile stability is maintained through a phenomenon known as “tail-slapping” or impingement of the rear of the projectile on the cavitation vapor-water interface which envelopes the projectile. As the projectile slows the predominate forces undergo a transition which is outside the codes’ capabilities to calculate accurately, however, CTH and EPIC both predict the projectile trajectory well in the initial hypervelocity regime. Stable projectile designs and the achievable acceleration space are explored through a large parameter sweep of CTH simulations. Front face chamfer angle has the largest influence on stability with low angles being more stable.
The National Aeronautics and Space Administration’s (NASA) Artemis program seeks to establish the first long-term presence on the Moon as part of a larger goal of sending the first astronauts to Mars. To accomplish this, the Artemis program is designed to develop, test, and demonstrate many technologies needed for deep space exploration and supporting life on another planet. Long-term operations on the lunar base include habitation, science, logistics, and in-situ resource utilization (ISRU). In this paper, a Lunar DC microgrid (LDCMG) structure is the backbone of the energy distribution, storage, and utilization infrastructure. The method to analyze the LDCMG power distribution network and ESS design is the Hamiltonian surface shaping and power flow control (HSSPFC). This ISRU system will include a networked three-microgrid system which includes a Photo-voltaic (PV) array (generation) on one sub-microgrid and water extraction (loads) on the other two microgrids. A system's reduced-order model (ROM) will be used to create a closed-form analytical model. Ideal ESS devices will be placed alongside each state of the ROM. The ideal ESS devices determine the response needed to conform to a specific operating scenario and system specifications.
Multiple rotors on single structures have long been proposed to increase wind turbine energy capture with no increase in rotor size, but at the cost of additional mechanical complexity in the yaw and tower designs. Standard turbines on their own very-closely-spaced towers avoid these disadvantages but create a significant disadvantage; for some wind directions the wake turbulence of a rotor enters the swept area of a very close downwind rotor causing low output, fatigue stress, and changes in wake recovery. Knowing how the performance of pairs of closely spaced rotors varies with wind direction is essential to design a layout that maximizes the useful directions and minimizes the losses and stress at other directions. In the current work, the high-fidelity large-eddy simulation (LES) code Exa-Wind/Nalu-Wind is used to simulate the wake interactions from paired-rotor configurations in a neutrally stratified atmospheric boundary layer to investigate performance and feasibility. Each rotor pair consists of two Vestas V27 turbines with hub-to-hub separation distances of 1.5 rotor diameters. The on-design wind direction results are consistent with previous literature. For an off-design wind direction of 26.6°, results indicate little change in power and far-wake recovery relative to the on-design case. At a direction of 45.0°, significant rotor-wake interactions produce an increase in power but also in far-wake velocity deficit and turbulence intensity. A severely off-design case is also considered.
We present a design paradigm based on topological charge splitting for creating nearly-degenerate, high-quality factor (Q) states with arbitrary polarization states in all-dielectric metasurfaces.
Reinforcement learning (RL) may enable fixedwing unmanned aerial vehicle (UAV) guidance to achieve more agile and complex objectives than typical methods. However, RL has yet struggled to achieve even minimal success on this problem; fixed-wing flight with RL-based guidance has only been demonstrated in literature with reduced state and/or action spaces. In order to achieve full 6-DOF RL-based guidance, this study begins training with imitation learning from classical guidance, a method known as warm-staring (WS), before further training using Proximal Policy Optimization (PPO). We show that warm starting is critical to successful RL performance on this problem. PPO alone achieved a 2% success rate in our experiments. Warm-starting alone achieved 32% success. Warm-starting plus PPO achieved 57% success over all policies, with 40% of policies achieving 94% success.
Criticality Control Overpack (CCO) containers are being considered for the disposal of defense-related nuclear waste at the Waste Isolation Pilot Plant (WIPP).
Two-dimensional (2D) layered oxides have recently attracted wide attention owing to the strong coupling among charges, spins, lattice, and strain, which allows great flexibility and opportunities in structure designs as well as multifunctionality exploration. In parallel, plasmonic hybrid nanostructures exhibit exotic localized surface plasmon resonance (LSPR) providing a broad range of applications in nanophotonic devices and sensors. A hybrid material platform combining the unique multifunctional 2D layered oxides and plasmonic nanostructures brings optical tuning into the new level. In this work, a novel self-assembled Bi2MoO6 (BMO) 2D layered oxide incorporated with plasmonic Au nanoinclusions has been demonstrated via one-step pulsed laser deposition (PLD) technique. Comprehensive microstructural characterizations, including scanning transmission electron microscopy (STEM), differential phase contrast imaging (DPC), and STEM tomography, have demonstrated the high epitaxial quality and particle-in-matrix morphology of the BMO-Au nanocomposite film. DPC-STEM imaging clarifies the magnetic domain structures of BMO matrix. Three different BMO structures including layered supercell (LSC) and superlattices have been revealed which is attributed to the variable strain states throughout the BMO-Au film. Owing to the combination of plasmonic Au and layered structure of BMO, the nanocomposite film exhibits a typical LSPR in visible wavelength region and strong anisotropy in terms of its optical and ferromagnetic properties. This study opens a new avenue for developing novel 2D layered complex oxides incorporated with plasmonic metal or semiconductor phases showing great potential for applications in multifunctional nanoelectronics devices. [Figure not available: see fulltext.]
Extreme meteorological events, such as hurricanes and floods, cause significant infrastructure damage and, as a result, prolonged grid outages. To mitigate the negative effect of these outages and enhance the resilience of communities, microgrids consisting of solar photovoltaics (PV), energy storage (ES) technologies, and backup diesel generation are being considered. Furthermore, it is necessary to take into account how the extreme event affects the systems' performance during the outage, often referred to as black-sky conditions. In this paper, an optimization model is introduced to properly size ES and PV technologies to meet various duration of grid outages for selected critical infrastructure while considering black-sky conditions. A case study of the municipality of Villalba, Puerto Rico is presented to identify the several potential microgrid configurations that increase the community's resilience. Sensitivity analyses are performed around the grid outage durations and black-sky conditions to better decide what factors should be considered when scoping potential microgrids for community resilience.
This paper presents the ongoing development of a wireline tool designed to detect and quantify inflows from feed zones in geothermal wells based on measurement of chloride. The tool aims to characterize stimulation events in Enhanced Geothermal Systems (EGS) wells at Utah FORGE (Frontier Observatory for Research in Geothermal Energy) and other EGS sites. Successful development of the chloride tool would greatly improve production monitoring of the fractures and enable proactive prescription of additional stimulations over the life of the field, thus helping to improve EGS commercial feasibility. The recent development of the chloride tool involves an Ion Specific Electrodes (ISE) probe and a reference electrode, assembled through a labor-intensive process, and designed to withstand downhole conditions for field deployment. Through laboratory experiments and numerical simulations, the tool demonstrated efficacy in identifying changes in chloride concentration, indicating its utility in feed zone detection. However, the impact of impedance on voltage measurements and discrepancies between laboratory and simulation results presented opportunities for further refinement. Notably, simulation results consistently underestimated actual chloride concentration by 30-40%, suggesting the need for compensatory calibration. Comparisons between different simulation software indicated that ANSYS was more accurate in replicating key features observed in laboratory experiments. Moreover, a Machine Learning (ML) approach was used to improve feed zone location detection and inflow rate measurement, utilizing Random Forest and Light Gradient Boosting Machine (LGBM) models, which delivered high performance scores. Thus, the chloride tool's recent development and integration with machine learning approaches offer promising advancements in feed zone identification and quantification.
We consider the intersection between nonrepeating random FM (RFM) waveforms and practical forms of optimal mismatched filtering (MMF). Specifically, the spectrally-shaped inverse filter (SIF) is a well-known approximation to the least-squares (LS-MMF) that provides significant computational savings. Given that nonrepeating waveforms likewise require unique nonrepeating MMFs, this efficient form is an attractive option. Moreover, both RFM waveforms and the SIF rely on spectrum shaping, which establishes a relationship between the goodness of a particular waveform and the mismatch loss (MML) the corresponding filter can achieve. Both simulated and open-air experimental results are shown to demonstrate performance.
When exposed to mechanical environments such as shock and vibration, electrical connections may experience increased levels of contact resistance associated with the physical characteristics of the electrical interface. A phenomenon known as electrical chatter occurs when these vibrations are large enough to interrupt the electric signals. It is critical to understand the root causes behind these events because electrical chatter may result in unexpected performance or failure of the system. The root causes span a variety of fields, such as structural dynamics, contact mechanics, and tribology. Therefore, a wide range of analyses are required to fully explore the physical phenomenon. This paper intends to provide a better understanding of the relationship between structural dynamics and electrical chatter events. Specifically, electrical contact assembly composed of a cylindrical pin and bifurcated structure were studied using high fidelity simulations. Structural dynamic simulations will be performed with both linear and nonlinear reduced-order models (ROM) to replicate the relevant structural dynamics. Subsequent multi-physics simulations will be discussed to relate the contact mechanics associated with the dynamic interactions between the pin and receptacle to the chatter. Each simulation method was parametrized by data from a variety of dynamic experiments. Both structural dynamics and electrical continuity were observed in both the simulation and experimental approaches, so that the relationship between the two can be established.
Advancements in photonic quantum information systems (QIS) have driven the development of high-brightness, on-demand, and indistinguishable semiconductor epitaxial quantum dots (QDs) as single photon sources. Strain-free, monodisperse, and spatially sparse local-droplet-etched (LDE) QDs have recently been demonstrated as a superior alternative to traditional Stranski-Krastanov QDs. However, integration of LDE QDs into nanophotonic architectures with the ability to scale to many interacting QDs is yet to be demonstrated. We present a potential solution by embedding isolated LDE GaAs QDs within an Al0.4Ga0.6As Huygens’ metasurface with spectrally overlapping fundamental electric and magnetic dipolar resonances. We demonstrate for the first time a position- and size-independent, 1 order of magnitude increase in the collection efficiency and emission lifetime control for single-photon emission from LDE QDs embedded within the Huygens’ metasurfaces. Our results represent a significant step toward leveraging the advantages of LDE QDs within nanophotonic architectures to meet the scalability demands of photonic QIS.
The Reynolds-averaged Navier–Stokes (RANS) equations remain a workhorse technology for simulating compressible fluid flows of practical interest. Due to model-form errors, however, RANS models can yield erroneous predictions that preclude their use on mission-critical problems. This work presents a data-driven turbulence modeling strategy aimed at improving RANS models for compressible fluid flows. The strategy outlined has three core aspects: (1) prediction for the discrepancy in the Reynolds stress tensor and turbulent heat flux via machine learning (ML), (2) estimating uncertainties in ML model outputs via out-of-distribution detection, and (3) multi-step training strategies to improve feature-response consistency. Results are presented across a range of cases publicly available on NASA’s turbulence modeling resource involving wall-bounded flows, jet flows, and hypersonic boundary layer flows with cold walls. We find that one ML turbulence model is able to provide consistent improvements for numerous quantities-of-interest across all cases.