The purpose of this report is to provide an overview of Micro-System technology as it applies to inertial sensing. Transduction methods are reviewed with capacitance and piezoresistive being the most often used in COTS Micro-electro-mechanical system (MEMS) inertial sensors. Optical transduction is the most recent transduction method having significant impact on improving sensor resolution. A few other methods are motioned which are in a R&D status to hopefully allow MEMS inertial sensors to become viable as a navigation grade sensor. The accelerometer, gyroscope and gravity gradiometer are the type of inertial sensors which are reviewed in this report. Their method of operation and a sampling of COTS sensors and grade are reviewed as well.
The outline of this presentation is: (1) Applications of Kovar Alloy in metal/ceramic brazing; (2) Diffusion bonding of precision-photoetched Kovar parts; (3) Sample composition and annealing conditions; (4) Intermediate temperature creep properties (350-650 C); (5) Power law creep correlations--with and without modulus correction; (6) Compressive stress-strain properties (23-900 C); (7) Effect of creep deformation on grain growth; and (8) Application of the power law creep correlation to the diffusion bonding application. The summary and conclusions are: Elevated temperature creep properties of Kovar from 750-900 C obey a power law creep equation with a stress exponent equal to 4.9, modulus compensated activation energy of 47.96 kcal/mole. Grain growth in Kovar creep samples tested at 750 and 800 C is quite sluggish. Significant grain growth occurs at 850 C and above, this is consistent with isothermal grain growth studies performed on Kovar alloy wires. Finite element analysis of the diffusion bonding of Kovar predict that stresses of 30 MPa and higher are needed for good bonding at 850 C, we believe that 'sintering' effects must be accounted for to allow FEA to be predictive of actual processing conditions. Additional creep tests are planned at 250-650 C.
A study proposed that metal-organic frameworks (MOF) can potentially offer the desired level of structural control, leading to the formation of a new class of radiation detection materials. It was found that the rigid structure of MOFs can create permanent nonporosity. It was demonstrated permanent nonporosity has the potential for gas storage,separations, catalysis, and sensing. It was demonstrated that this feature of MOFs can be beneficial in scintillation materials, enabling MOFs to serve as hosts for wavelength shifters, or elements designed to improve the detection cross-section. It was observed that MOFs, along with scintillation materials, present significant opportunity to perform crystal engineering, creating the potential for rational design of new scintillation materials. Spectroscopic measurements of these MOFs, using single crystals demonstrated that they respond to ionizing radiation by emitting light, creating a new class of scintillation materials.
A subscale experiment has been constructed using fins mounted on one wall of a transonic wind tunnel to investigate the influence of fin trailing vortices upon downstream control surfaces. Data were collected using a fin balance instrumenting the downstream fin to measure the aerodynamic forces of the interaction, combined with stereoscopic particle image velocimetry to determine vortex properties. The fin balance data show that the response of the downstream fin essentially is shifted from the baseline single-fin data dependent upon the angle of attack of the upstream fin. Freestream Mach number and the spacing between fins have secondary effects. The velocimetry shows the increase in vortex strength with upstream fin angle of attack, but no variation with Mach number can be discerned in the normalized velocity data. Correlations between the force data and the velocimetry indicate that the interaction is fundamentally a result of an angle of attack superposed upon the downstream fin by the vortex shed from the upstream fin tip. The Mach number influence arises from differing vortex lift on the leading edge of the downstream fin even when the impinging vortex is Mach invariant. Copyright Clearance Center, Inc.
A subscale experiment has been constructed using fins mounted on one wall of a transonic wind tunnel to investigate the influence of fin trailing vortices upon downstream control surfaces. Data were collected using a fin balance instrumenting the downstream fin to measure the aerodynamic forces of the interaction, combined with stereoscopic particle image velocimetry to determine vortex properties. The fin balance data show that the response of the downstream fin essentially is shifted from the baseline single-fin data dependent upon the angle of attack of the upstream fin. Freestream Mach number and the spacing between fins have secondary effects. The velocimetry shows the increase in vortex strength with upstream fin angle of attack, but no variation with Mach number can be discerned in the normalized velocity data. Correlations between the force data and the velocimetry indicate that the interaction is fundamentally a result of an angle of attack superposed upon the downstream fin by the vortex shed from the upstream fin tip. The Mach number influence arises from differing vortex lift on the leading edge of the downstream fin even when the impinging vortex is Mach invariant. Copyright Clearance Center, Inc.
The development of a manufactured solution for enclosure radiation in an infinitely long circular cylinder with a nonparticipating medium is presented. This solution is then used to verify the correct implementation of the commonly used discrete enclosure equations. The circular cross section is approximated by a faceted geometry; the numbers of facets used are 4, 8, 16, 32, 64, and 128. The crossed-string method, which is exact in this application, is used to compute the view factors. Computational results using six levels of grid refinement suggest that the error norm between the integral equation solution and the discrete equation solution behaves as h2 where h is a characteristic mesh size.
This paper presents a derivation of an expression to estimate the accommodation coefficient for gas collisions with a graphite surface, which is meant for use in models of laser-induced incandescence (LII) of soot. Energy transfer between gas molecules and solid surfaces has been studied extensively, and a considerable amount is known about the physical mechanisms important in thermal accommodation. Values of accommodation coefficients currently used in LII models are temperature independent and are based on a small subset of information available in the literature. The expression derived in this study is based on published data from state-to-state gas-surface scattering experiments. The present study compiles data on the temperature dependence of translational, rotational, and vibrational energy transfer for diatomic molecules (predominantly NO) colliding with graphite surfaces. The data were used to infer partial accommodation coefficients for translational, rotational, and vibrational degrees of freedom, which were consolidated to derive an overall accommodation coefficient that accounts for accommodation of all degrees of freedom of the scattered gas distributions. This accommodation coefficient can be used to calculate conductive cooling rates following laser heating of soot particles.
Combined experimental and numerical studies of the transient response of ignition to strained flows require a well-characterized ignition trigger. Laser deposition of a small radical pool provides a reliable method for initiating ignition of mixtures that are near the ignition limit. Two-dimensional direct numerical simulations are used to quantify the sensitivity of ignition kernel formation and subsequent edge-flame propagation to the oxidizer temperature and the initial width and amplitude of O-atom deposition used to trigger ignition in an axisymmetric counterflow of heated air versus ambient hydrogen/nitrogen. The ignition delay and super-equilibrium OH concentration in the nascent ignition kernel are highly sensitive to variations in these initial conditions. The ignition delay decreases as the amplitude of the initial O-atom deposition increases. The spatial distribution and the magnitude of the OH overshoot are governed by multi-dimensional effects. The degree of OH overshoot near the burner centerline increases as the diameter of the initial O-atom deposition region decreases. This result is attributed to preferential diffusion of hydrogen in the highly curved leading portion of the edge flame that is established following thermal runaway. The edge-flame speed and OH overshoot at the leading edge of the edge flame are relatively insensitive to variations in the initial conditions of the ignition. The steady edge-flame speed is approximately twice the corresponding laminar flame speed. The rate at which the edge flame approaches its steady state is insensitive to the initial conditions and depends solely on the diffusion time scale at the edge flame. The edge flame is curved toward the heated oxidizer stream as a result of differences in the chemical kinetics between the leading edge and the trailing diffusion flame. The structure of the highly diluted diffusion flame considered in this study corresponds to Liñán's 'premixed flame regime' in which only the oxidizer leaks through the reaction zone such that the flame is located at fuel lean rather than stoichiometric mixture fraction conditions.
Diesel injection parameters effect on liquid-phase diesel spray penetration after the end-of-injection (EOI) is investigated in a constant-volume chamber over a range of ambient and injector conditions typical of a diesel engine. Our past work showed that the maximum liquid penetration length of a diesel spray may recede towards the injector after EOI at some conditions. Analysis employing a transient jet entrainment model showed that increased fuel-ambient mixing occurs during the fuel-injection-rate ramp-down as increased ambient-entrainment rates progress downstream (i.e. the entrainment wave), permitting complete fuel vaporization at distances closer to the injector than the quasi-steady liquid length. To clarify the liquid-length recession process, in this study we report Mie-scatter imaging results near EOI over a range of injection pressure, nozzle size, fuel type, and rate-of-injection shape. We then use a transient jet entrainment model for detailed analysis. Results show that an increased injection pressure correlates well with increasing liquid length recession due to an increased entrainment wave speed. Likewise, an increased nozzle size, with higher jet momentum and faster entrainment wave, enhances the liquid length recession. A low-density, high-volatility fuel does not decrease the strength of the entrainment wave; however, it decreases the steady liquid length causing the entrainment wave to reach the liquid spray tip earlier, which ultimately results in faster liquid length recession. A slow ramp down in injection rate causes a weaker entrainment wave so that the liquid length recession occurs even prior to injector close.
Manginell, Ronald P.; Adkins, Douglas R.; Moorman, Matthew W.; Hadizadeh, Rameen; Copic, Davor; Porter, Daniel; Anderson, John M.; Wheeler, David R.; Pfeifer, Kent B.; Rumpf, Arthur
The low-frequency meander of a trailing vortex shed from a tapered fin installed on a wind tunnel wall has been studied using stereoscopic particle image velocimetry in the near-wake at Mach 0.8. Distributions of the instantaneous vortex position reveal that the meander amplitude increases with downstream distance and decreases with vortex strength, indicating meander is induced external to the vortex. Trends with downstream distance suggest meander begins on the fin surface, prior to vortex shedding. Mean vortex properties are unaltered when considered in the meandering reference frame, apparently because turbulent fluctuations in the vortex shape and strength dominate positional variations. Conversely, a large peak of artificial turbulent kinetic energy is found centered in the vortex core, which almost entirely disappears when corrected for meander, though some turbulence remains near the core radius. Turbulence originating at the wind tunnel wall was shown to contribute to vortex meander by energizing the incoming boundary layer using low-profile vortex generators and observing a substantial increase in the meander amplitude while greater turbulent kinetic energy penetrates the vortex core. An explanatory mechanism has been hypothesized, in which the vortex initially forms at the apex of the swept leading edge of the fin where it is exposed to turbulent fluctuations within the wind tunnel wall boundary layer, introducing an instability into the incipient vortex core.
The catalytic effect of nitric oxide (NO) on the dynamics of extinction and re-ignition of a vortex-perturbed non-premixed hydrogen-air flame is studied in a counterflow burner. A diffusion flame is established with counterflowing streams of nitrogen-diluted hydrogen at ambient temperature and air heated to a range of temperatures that brackets the auto-ignition temperature. Localized extinction is induced by impulsively driving a fuel-side toroidal vortex into the steady flame, and the recovery of the extinguished region is monitored by planar laser-induced fluorescence (PLIF) of the hydroxyl radical (OH). The dynamics of flame recovery depend on the air temperature and fuel concentration, and four different recovery modes are identified. These modes involve combinations of edge-flame propagation and the expansion of an auto-ignition kernel that forms within the extinguished region. The addition of a small amount of NO significantly alters the re-ignition process by shifting the balance between chain-termination and chain-propagation reactions to enhance auto-ignition. The ignition enhancement by this catalytic effect causes a shift in the conditions that govern the recovery modes. In addition, the effects of NO concentration and vortex strength on the flame recovery are examined. Direct numerical simulations of the flame-vortex interaction with and without NO doping show how the small amount of OH produced by NO-catalyzed reactions has a significant impact on the development of an auto-ignition kernel. This joint experimental and numerical study provides detailed insight into the interaction between transient flows and ignition processes.
The authors establish a fundamental relationship between the phase and amplitude responses of an optomechanically variable photonic circuit and the forces and potentials produced by light. These results are illustrated through resonant and nonresonant multi-port systems.
Using low-energy electron microscopy, we measure the diffusion of Pd into bulk Cu at the Cu(100) surface. Interdiffusion is tracked by measuring the dissolution of the Cu(100)-c(2 x 2)-Pd surface alloy during annealing (T > 240 C). The activation barrier for Pd diffusion from the surface alloy into the bulk is determined to be (1.8 {+-} 0.6) eV. During annealing, we observe the growth of a new layer of Cu near step edges. Under this new Cu layer, dilute Pd remaining near the surface develops a layered structure similar to the Cu{sub 3}Pd L 1{sub 2} bulk alloy phase.
Research into the use of multiframe superresolution has led to the development of algorithms for providing images with enhanced resolution using several lower resolution copies. An integral component of these algorithms is the determination of the registration of each of the low resolution images to a reference image. Without this information, no resolution enhancement can be attained. We have endeavored to find a suitable method for registering severely undersampled images by comparing several approaches. To test the algorithms, an ideal image is input to a simulated image formation program, creating several undersampled images with known geometric transformations. The registration algorithms are then applied to the set of low resolution images and the estimated registration parameters compared to the actual values. This investigation is limited to monochromatic images (extension to color images is not difficult) and only considers global geometric transformations. Each registration approach will be reviewed and evaluated with respect to the accuracy of the estimated registration parameters as well as the computational complexity required. In addition, the effects of image content, specifically spatial frequency content, as well as the immunity of the registration algorithms to noise will be discussed.
Pb-based ferroelectrics are useful because of their large dielectric constants, high polarization values, and strong piezoelectric coefficients, but typically require sintering temperatures >1200 C, which leads to loss of the volatile Pb cation and necessitates the use of Pt electrodes for cofired parts. Reduced sintering temperatures can minimize lead loss and enable the use of cheaper electrodes, but must not sacrifice electrical performance. A systematic study of dopants to lower the sintering temperature of PNSZT (Pb0.992 (Zr0.815 Ti0.05 Sn0.135)0.9845 Nb0.155 O3) led to densities greater than 98.5% of theoretical at temperatures as low as 1100 C with as little as 0.2 wt% of a Pb glass additive or as high as 98% at 900 C with Cu2O additions with equivalent electrical properties to undoped materials.
A standard and widespread approach to part-of-speech tagging is based on Hidden Markov Models (HMMs). An alternative approach, pioneered by Schütze (1993), induces parts of speech from scratch using singular value decomposition (SVD). We introduce DEDICOM as an alternative to SVD for part-of-speech induction. DEDICOM retains the advantages of SVD in that it is completely unsupervised: no prior knowledge is required to induce either the tagset or the associations of types with tags. However, unlike SVD, it is also fully compatible with the HMM framework, in that it can be used to estimate emission- and transition-probability matrices which can then be used as the input for an HMM. We apply the DEDICOM method to the CONLL corpus (CONLL 2000) and compare the output of DEDICOM to the part-of-speech tags given in the corpus, and find that the correlation (almost 0.5) is quite high. Using DEDICOM, we also estimate part-of-speech ambiguity for each type, and find that these estimates correlate highly with part-of-speech ambiguity as measured in the original corpus (around 0.88). Finally, we show how the output of DEDICOM can be evaluated and compared against the more familiar output of supervised HMM-based tagging.
Dispersion and attenuation relations are derived for both the continuous and discrete velocity-memory-stress systems governing 3D anelastic wave propagation in a standard linear solid. Phase speed and attenuation factor curves extracted from these relations enable optimal selection of spatial and temporal gridding intervals to achieve finite-difference algorithm efficiency, while simultaneously minimizing numerical inaccuracy.