Multiscale Modeling of Microstructure and Damage Evolution in the Performance of Additively Manufactured Parts
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Modelling and Simulation in Materials Science and Engineering
Additive manufacturing (AM) processes for metals can yield as-built microstructures that vary significantly from their cast or wrought counterparts. These microstructural variations can in turn, have profound effects on the properties of a component. Here, a modeling methodology is presented to investigate microstructurally-influenced mechanical response in additively manufactured structures via direct numeral simulation. Three-dimensional, synthetic voxelized microstructures are generated by kinetic Monte Carlo (kMC) additive manufacturing process simulations performed at four scan speeds to create a thin-wall cylindrical geometry notionally constructed using a concentric-pathed directed energy deposition AM process. The kMC simulations utilize a steady-state molten pool geometry that is held constant throughout the study. Resultant microstructures are mapped onto a highly-refined conformal finite-element mesh of a part geometry. A grain-scale anisotropic crystal elasticity model is then used to represent the constitutive response of each grain. The response of the structure subjected to relatively simple load conditions is studied in order to provide understanding of both the influence of AM processing on microstructure as well as the microstructure's influence on the macroscale mechanical response.
Journal of the American Ceramic Society
Brittle failure is often influenced by difficult to measure and variable microstructure-scale stresses. Recent advances in photoluminescence spectroscopy (PLS), including improved confocal laser measurement and rapid spectroscopic data collection have established the potential to map stresses with microscale spatial resolution (< 2 μm). Advanced PLS was successfully used to investigate both residual and externally applied stresses in polycrystalline alumina at the microstructure scale. The measured average stresses matched those estimated from beam theory to within one standard deviation, validating the technique. Modeling the residual stresses within the microstructure produced qualitative agreement in comparison with the experimentally measured results. Microstructure scale modeling is primed to take advantage of advanced PLS to enable its refinement and validation, eventually enabling microstructure modeling to become a predictive tool for brittle materials.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Modelling and Simulation in Materials Science and Engineering
Welding is one of the most wide-spread processes used in metal joining. However, there are currently no open-source software implementations for the simulation of microstructural evolution during a weld pass. Here we describe a Potts Monte Carlo based model implemented in the SPPARKS kinetic Monte Carlo computational framework. The model simulates melting, solidification and solid-state microstructural evolution of material in the fusion and heat-affected zones of a weld. The model does not simulate thermal behavior, but rather utilizes user input parameters to specify weld pool and heat-affect zone properties. Weld pool shapes are specified by Bézier curves, which allow for the specification of a wide range of pool shapes. Pool shapes can range from narrow and deep to wide and shallow representing different fluid flow conditions within the pool. Surrounding temperature gradients are calculated with the aide of a closest point projection algorithm. The model also allows simulation of pulsed power welding through time-dependent variation of the weld pool size. Example simulation results and comparisons with laboratory weld observations demonstrate microstructural variation with weld speed, pool shape, and pulsed-power.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Brittle failure is often influenced by difficult to measure and variable microstructure-scale stresses. Recent advances in photoluminescence spectroscopy (PLS), including improved confocal laser measurement and rapid spectroscopic data collection have established the potential to map stresses with microscale spatial resolution (%3C2 microns). Advanced PLS was successfully used to investigate both residual and externally applied stresses in polycrystalline alumina at the microstructure scale. The measured average stresses matched those estimated from beam theory to within one standard deviation, validating the technique. Modeling the residual stresses within the microstructure produced general agreement in comparison with the experimentally measured results. Microstructure scale modeling is primed to take advantage of advanced PLS to enable its refinement and validation, eventually enabling microstructure modeling to become a predictive tool for brittle materials.