Publications

Results 26–50 of 248

Search results

Jump to search filters

Controlled Formation of Stacked Si Quantum Dots in Vertical SiGe Nanowires

Nano Letters

Turner, Emily M.; Campbell, Quinn C.; Pizarro, Joaquin; Yang, Hongbin; Sapkota, Keshab R.; Lu, Ping L.; Baczewski, Andrew D.; Wang, George T.; Jones, Kevin S.

We demonstrate the ability to fabricate vertically stacked Si quantum dots (QDs) within SiGe nanowires with QD diameters down to 2 nm. These QDs are formed during high-temperature dry oxidation of Si/SiGe heterostructure pillars, during which Ge diffuses along the pillars' sidewalls and encapsulates the Si layers. Continued oxidation results in QDs with sizes dependent on oxidation time. The formation of a Ge-rich shell that encapsulates the Si QDs is observed, a configuration which is confirmed to be thermodynamically favorable with molecular dynamics and density functional theory. The type-II band alignment of the Si dot/SiGe pillar suggests that charge trapping on the Si QDs is possible, and electron energy loss spectra show that a conduction band offset of at least 200 meV is maintained for even the smallest Si QDs. Our approach is compatible with current Si-based manufacturing processes, offering a new avenue for realizing Si QD devices.

More Details

Modeling and Assessment of Atomic Precision Advanced Manufacturing (APAM) Enabled Vertical Tunneling Field Effect Transistor

International Conference on Simulation of Semiconductor Processes and Devices, SISPAD

Gao, Xujiao G.; Mendez Granado, Juan P.; Lu, Tzu-Ming L.; Anderson, Evan M.; Campbell, DeAnna M.; Ivie, Jeffrey A.; Schmucker, Scott W.; Grine, Albert D.; Lu, Ping L.; Tracy, Lisa A.; Arghavani, Reza A.; Misra, Shashank M.

The atomic precision advanced manufacturing (APAM) enabled vertical tunneling field effect transistor (TFET) presents a new opportunity in microelectronics thanks to the use of ultra-high doping and atomically abrupt doping profiles. We present modeling and assessment of the APAM TFET using TCAD Charon simulation. First, we show, through a combination of simulation and experiment, that we can achieve good control of the gated channel on top of a phosphorus layer made using APAM, an essential part of the APAM TFET. Then, we present simulation results of a preliminary APAM TFET that predict transistor-like current-voltage response despite low device performance caused by using large geometry dimensions. Future device simulations will be needed to optimize geometry and doping to guide device design for achieving superior device performance.

More Details

A New Route to Quantum-Scale Structures through a Novel Enhanced Germanium Diffusion Mechanism

Wang, George T.; Lu, Ping L.; Sapkota, Keshab R.; Baczewski, Andrew D.; Campbell, Quinn C.; Schultz, Peter A.; Jones, Kevin S.; Turner, Emily M.; Sharrock, Chappel J.; Law, Mark E.; Yang, Hongbin

This project sought to develop a fundamental understanding of the mechanisms underlying a newly observed enhanced germanium (Ge) diffusion process in silicon germanium (SiGe) semiconductor nanostructures during thermal oxidation. Using a combination of oxidationdiffusion experiments, high resolution imaging, and theoretical modeling, a model for the enhanced Ge diffusion mechanism was proposed. Additionally, a nanofabrication approach utilizing this enhanced Ge diffusion mechanism was shown to be applicable to arbitrary 3D shapes, leading to the fabrication of stacked silicon quantum dots embedded in SiGe nanopillars. A new wet etch-based method for preparing 3D nanostructures for highresolution imaging free of obscuring material or damage was also developed. These results enable a new method for the controlled and scalable fabrication of on-chip silicon nanostructures with sub-10 nm dimensions needed for next generation microelectronics, including low energy electronics, quantum computing, sensors, and integrated photonics.

More Details

Predicting and synthesizing interface stabilized 2D layers

Chemistry of Materials

Lu, Ping L.

The compound (Pb2MnSe3)0.6VSe2 was predicted to be kinetically stable based on density functional theory (DFT) calculations on an island of Pb2MnSe3 between layers of VSe2. This approach provides a high degree of freedom by not forcing interlayer lattice match, making it ideal to investigate the likelihood of formation of new incommensurate layer misfit structures. The free space around the island is critical, as it allows atoms to diffuse and hence exploring the local energy landscape around the initial configuration. (Pb2MnSe3)0.6VSe2 was synthesized via a near diffusionless reaction from precursors where a repeating sequence of elemental layers matches the local composition and layer sequence of the predicted compound. The VSe2 layer consists of a Se-V-Se trilayer with octahedral coordination of the V atoms. The Pb2MnSe3 layer consists of three rock-salt-like planes, with a MnSe layer between the planes of PbSe. The center MnSe plane stabilizes the puckering of the outer PbSe layers. Electrical properties indicate that (Pb2Mn1Se3)0.6VSe2 undergoes a charge density wave transition at ~100 K and orders ferromagnetically at 35 K. The combination of theory and experiment enables a faster convergence to new heterostructures than either approach in isolation.

More Details

Novel vertically aligned nanocomposite of Bi2WO6-Co3O4 with room-temperature multiferroic and anisotropic optical response

Nano Research

Lu, Ping L.

A review of a new vertically aligned nanocomposite (VAN) structure based on two-dimensional (2D) layered oxides has been designed and self-assembled on both LaAlO3 (001) and SrTiO3 (001) substrates. The new VAN structure consists of epitaxially grown Co3O4 nanopillars embedded in the Bi2WO6 matrix with a unique 2D layered structure, as evidenced by the microstructural analysis. Physical property measurements show that the new Bi2WO6-Co3O4 VAN structure exhibits strong ferromagnetic and piezoelectric response at room temperature as well as anisotropic permittivity response. This work demonstrates a new approach in processing multifunctional VANs structure based on the layered oxide systems towards future nonlinear optics, ferromagnets, and multiferroics.

More Details

Self-biased magnetoelectric switching at room temperature in three-phase ferroelectric–antiferromagnetic–ferrimagnetic nanocomposites

Nature Electronics

Lu, Ping L.

Magnetoelectric systems could be used to develop magnetoelectric random access memory and microsensor devices. One promising system is the two-phase 3-1-type multiferroic nanocomposite in which a one-dimensional magnetic column is embedded in a three-dimensional ferroelectric matrix. However, it suffers from a number of limitations including unwanted leakage currents and the need for biasing with a magnetic field. Here we show that the addition of an antiferromagnet to a 3-1-type multiferroic nanocomposite can lead to a large, self-biased magnetoelectric effect at room temperature. Our three-phase system is composed of a ferroelectric Na0.5Bi0.5TiO3 matrix in which ferrimagnetic NiFe2O4 nanocolumns coated with antiferromagnetic p-type NiO are embedded. This system, which is self-assembled, exhibits a magnetoelectric coefficient of up to 1.38 × 10–9 s m–1, which is large enough to switch the magnetic anisotropy from the easy axis (Keff = 0.91 × 104 J m–3) to the easy plane (Keff = –1.65 × 104 J m–3).

More Details

Atomic Structure of Surface-Densified Phases in Ni-Rich Layered Compounds

ACS Applied Materials and Interfaces

Lu, Ping L.

In this work, we report the presence of surface-densified phases (β-Ni5O8, γ-Ni3O4, and δ-Ni7O8) in LiNiO2 (LNO)- and LiNi0.8Al0.2O2 (LNA)-layered compounds by combined atomic level scanning transmission electron microscopy (STEM) and electron energy loss spectroscopy (EELS). These surface phases form upon electrochemical aging at high state of charge corresponding to a fully delithiated state. A unique feature of these phases is the periodic occupancy by Ni2+ in the Li layer. This periodic Ni occupancy gives rise to extra diffraction reflections, which are qualitatively similar to those of the LiNi2O4 spinel structure, but these surface phases have a lower Ni valence state and cation content than spinel. These experimental results confirm the presence of thermodynamically stable surface phases and provide new insights into the phenomena of surface phase formation in Ni-rich layered structures.

More Details

Understanding the Reactions between Fe and Se Binary Diffusion Couples

Chemistry of Materials

Lu, Ping L.

Spurred by recent discoveries of high-temperature superconductivity in Fe-Se-based materials, the magnetic, electronic, and catalytic properties of iron chalcogenides have drawn significant attention. However, much remains to be understood about the sequence of phase formation in these systems. Here, we shed light on this issue by preparing a series of binary Fe-Se ultrathin diffusion couples via designed thin-film precursors and investigating their structural evolution as a function of composition and annealing temperature. Two previously unreported Fe-Se phases crystallized during the deposition process on a nominally room-temperature Si substrate in the 27-33 and 37-47% Fe (atomic percent) composition regimes. Both phases completely decompose after annealing to 200 °C in a nitrogen glovebox. At higher temperatures, the sequence of phase formation is governed by Se loss in the annealing process, consistent with what would be expected from the phase diagram. Films rich in Fe (53-59% Fe) crystalized during deposition as β-FeSe (P4/nmm) with preferred c-axis orientation to the amorphous SiO2 substrate surface, providing a means to nonepitaxial self-assembly of crystallographically aligned, iron-rich β-FeSe for future research. Our findings suggest that the crystallization of binary Fe-Se compounds at room temperature via near diffusionless transformations should be a significant consideration in future attempts to prepare metastable ternary and higher-order compounds containing Fe and Se.

More Details

Structure-Property Relationships of Additively Manufactured Ni-Nb Alloys [Slides]

Jones, Morgan J.; Kustas, Andrew K.; DelRio, Frank W.; Pegues, Jonathan W.; Lu, Ping L.; Chandross, M.; Argibay, Nicolas A.

In this work, scratch and nanoindentation testing was used to determine hardness, fracture toughness, strain rate sensitivity, and activation volumes on additively manufactured graded and uniform Ni-Nb bulk specimens. Characterization showed the presence of a two phase system consisting of Ni3Nb and Ni6Nb7 intermetallics. Intermetallics were multimodal in nature, having grain and cell sizes spanning from a few nanometers to 10s of micrometers. The unique microstructure resulted in impressively high hardness, up to 20 GPa in the case of the compositionally graded sample. AM methods with surface deformation techniques are a useful way to rapidly probe material properties and alloy composition space.

More Details

Structure-Property Relationships of Additively Manufactured Ni-Nb Alloys [Slides]

Jones, Morgan J.; Kustas, Andrew K.; DelRio, Frank W.; Pegues, Jonathan W.; Lu, Ping L.; Chandross, M.; Argibay, Nicolas A.

In this work, scratch and nanoindentation testing was used to determine hardness, fracture toughness, strain rate sensitivity, and activation volumes on additively manufactured graded and uniform Ni-Nb bulk specimens. Characterization showed the presence of a two phase system consisting of Ni3Nb and Ni6Nb7 intermetallics. Intermetallics were multimodal in nature, having grain and cell sizes spanning from a few nanometers to 10s of micrometers. The unique microstructure resulted in impressively high hardness, up to 20 GPa in the case of the compositionally graded sample. AM methods with surface deformation techniques are a useful way to rapidly probe material properties and alloy composition space.

More Details

Nitride-Oxide-Metal Heterostructure with Self-Assembled Core–Shell Nanopillar Arrays: Effect of Ordering on Magneto-Optical Properties

Small

Lu, Ping L.

Magneto-optical (MO) coupling incorporates photon-induced change of magnetic polarization that can be adopted in ultrafast switching, optical isolators, mode convertors, and optical data storage components for advanced optical integrated circuits. However, integrating plasmonic, magnetic, and dielectric properties in one single material system poses challenges since one natural material can hardly possess all these functionalities. Here, co-deposition of a three-phase heterostructure composed of a durable conductive nitride matrix with embedded core–shell vertically aligned nanopillars, is demonstrated. The unique coupling between ferromagnetic NiO core and atomically sharp plasmonic Au shell enables strong MO activity out-of-plane at room temperature. Further, a template growth process is applied, which significantly enhances the ordering of the nanopillar array. The ordered nanostructure offers two schemes of spin polarization which result in stronger antisymmetry of Kerr rotation. The presented complex hybrid metamaterial platform with strong magnetic and optical anisotropies is promising for tunable and modulated all-optical-based nanodevices.

More Details

Multifunctional Metal-Oxide Nanocomposite Thin Film with Plasmonic Au Nanopillars Embedded in Magnetic La0.67Sr0.33MnO3Matrix

Nano Letters

Lu, Ping L.

Searching for multifunctional materials with tunable magnetic and optical properties has been a critical task toward the implementation of future integrated optical devices. Vertically aligned nanocomposite (VAN) thin films provide a unique platform for multifunctional material designs. Here, a new metal-oxide VAN has been designed with plasmonic Au nanopillars embedded in a ferromagnetic La0.67Sr0.33MnO3 (LSMO) matrix. Such Au-LSMO nanocomposite presents intriguing plasmon resonance in the visible range and magnetic anisotropy property, which are functionalized by the Au and LSMO phase, respectively. Furthermore, the vertically aligned nanostructure of metal and dielectric oxide results in the hyperbolic property for near-field electromagnetic wave manipulation. Such optical and magnetic response could be further tailored by tuning the composition of Au and LSMO phases.

More Details

Self-Assembled BaTiO3–AuxAg1–x Low-Loss Hybrid Plasmonic Metamaterials with an Ordered “Nano-Domino-like” Microstructure

ACS Applied Materials and Interfaces

Lu, Ping L.

Metallic plasmonic hybrid nanostructures have attracted enormous research interest due to the combined physical properties coming from different material components and the broad range of applications in nanophotonic and electronic devices. However, the high loss and narrow range of property tunability of the metallic hybrid materials have limited their practical applications. In this study, a metallic alloy-based self-assembled plasmonic hybrid nanostructure, i.e., a BaTiO3–AuxAg1–x (BTO) vertically aligned nanocomposite, has been integrated by a templated growth method for low-loss plasmonic systems. Comprehensive microstructural characterizations including high-resolution scanning transmission electron microscopy (HRSTEM), energy-dispersive X-ray spectroscopy (EDS), and three-dimensional (3D) electron tomography demonstrate the formation of an ordered “nano-domino-like” morphology with Au0.4Ag0.6 nanopillars as cylindrical cores and BTO as square shells. By comparing with the BTO–Au hybrid thin film, the BTO–Au0.4Ag0.6 alloyed film exhibits much broader plasmon resonance, hyperbolic dispersion, low-loss, and thermally robust features in the UV–vis–NIR wavelength region. This study provides a feasible platform for a complex alloyed plasmonic hybrid material design with low-loss and highly tunable optical properties toward all-optical integrated devices.

More Details

Path towards a vertical TFET enabled by atomic precision advanced manufacturing

2021 Silicon Nanoelectronics Workshop, SNW 2021

Lu, Tzu-Ming L.; Gao, Xujiao G.; Anderson, Evan M.; Mendez Granado, Juan P.; Campbell, DeAnna M.; Ivie, Jeffrey A.; Schmucker, Scott W.; Grine, Albert D.; Lu, Ping L.; Tracy, Lisa A.; Arghavani, Reza A.; Misra, Shashank M.

We propose a vertical TFET using atomic precision advanced manufacturing (APAM) to create an abrupt buried n++-doped source. We developed a gate stack that preserves the APAM source to accumulate holes above it, with a goal of band-to-band tunneling (BTBT) perpendicular to the gate – critical for the proposed device. A metal-insulator-semiconductor (MIS) capacitor shows hole accumulation above the APAM source, corroborated by simulation, demonstrating the TFET’s feasibility.

More Details

Design of 3D Oxide–Metal Hybrid Metamaterial for Tailorable Light–Matter Interactions in Visible and Near-Infrared Region

Advanced Optical Materials

Lu, Ping L.

Dielectric–metallic hybrid metamaterials exhibit extraordinary optical properties due to the light–matter interactions at the dielectric–metallic interfaces. The ability in precision control of the light–matter interactions in nanoscale is key to tailor the optical properties of hybrid metamaterials. In this work, a complex 3D framework of multilayered self-assembled BaTiO3(BTO)-Au hybrid thin films is demonstrated with such precision control of the light–matter interaction in nanoscale. Unique “bamboo-like” Au nanostructures are formed via the bilayer and trilayer stacking of BTO-Au hybrid layers with interlayers of SrTiO3, CeO2, or MgO. Different film strain states introduced by the three interlayers result in variable diameter and density of Au nanopillars. Both simulated and experimental optical data demonstrate the localized surface plasmon resonance change and hyperbolic dispersion wavelength shift in visible to near-infrared because of the effective tuning of the Au nanopillar aspect ratio and free electron density. The highly tunable optical properties along with the ferroelectric behavior and thermal robustness of the 3D hybrid film enable it to be a great candidate for multifunctional applications. This study demonstrates a unique 3D approach for precision optical property tuning and combined functionalities in oxide–metal metamaterial systems toward future integrated photonic and electronic devices.

More Details

Ultrathin epitaxial NbN superconducting films with high upper critical field grown at low temperature

Materials Research Letters

Lu, Ping L.

Ultrathin (5–50 nm) epitaxial superconducting niobium nitride (NbN) films were grown on AlN-buffered c-plane Al2O3 by an industrial scale physical vapor deposition technique at 400°C. Both X-ray diffraction and scanning electron microscopy analysis show high crystallinity of the (111)-oriented NbN films, with a narrow full-width-at-half-maximum of the rocking curve down to 0.030°. The lattice constant decreases with decreasing NbN layer thickness, suggesting lattice strain for films with thicknesses below 20 nm. The superconducting transition temperature, the transition width, the upper critical field, the irreversibility line, and the coherence length are closely correlated to the film thickness. IMPACT STATEMENT: This work realized high quality ultrathin epitaxial NbN films by an industry-scale PVD technology at low substrate temperature, which opens up new opportunities for quantum devices.

More Details

Evidence of Inverse Hall-Petch Behavior and Low Friction and Wear in High Entropy Alloys

Scientific Reports

Argibay, Nicolas A.; Chandross, M.; Jones, Morgan J.; Nation, Brendan L.; Wellington-Johnson, John A.; Curry, John C.; Kustas, Andrew K.; Lu, Ping L.

We present evidence of inverse Hall-Petch behavior for a single-phase high entropy alloy (CoCrFeMnNi) in ultra-high vacuum and show that it is associated with low friction coefficients (~0.3). Grain size measurements by STEM validate a recently proposed dynamic amorphization model that accurately predicts grain size-dependent shear strength in the inverse Hall-Petch regime. Wear rates in the initially soft (coarse grained) material were shown to be remarkably low (~10–6 mm3/N-m), the lowest for any HEA tested in an inert environment where oxidation and the formation of mixed metal-oxide films is mitigated. The combined high wear resistance and low friction are linked to the formation of an ultra-nanocrystalline near-surface layer. The dynamic amorphization model was also used to predict an average high angle grain boundary energy (0.87 J/m2). This value was used to explain cavitation-induced nanoporosity found in the highly deformed surface layer, a phenomenon that has been linked to superplasticity.

More Details

Nanoengineering room temperature ferroelectricity into orthorhombic SmMnO3 films

Nature Communications

Lu, Ping L.

Orthorhombic RMnO3 (R = rare-earth cation) compounds are type-II multiferroics induced by inversion-symmetry-breaking of spin order. They hold promise for magneto-electric devices. However, no spontaneous room-temperature ferroic property has been observed to date in orthorhombic RMnO3. Here, using 3D straining in nanocomposite films of (SmMnO3)0.5((Bi,Sm)2O3)0.5, we demonstrate room temperature ferroelectricity and ferromagnetism with TC,FM ~ 90 K, matching exactly with theoretical predictions for the induced strain levels. Large in-plane compressive and out-of-plane tensile strains (−3.6% and +4.9%, respectively) were induced by the stiff (Bi,Sm)2O3 nanopillars embedded. The room temperature electric polarization is comparable to other spin-driven ferroelectric RMnO3 films. Also, while bulk SmMnO3 is antiferromagnetic, ferromagnetism was induced in the composite films. The Mn-O bond angles and lengths determined from density functional theory explain the origin of the ferroelectricity, i.e. modification of the exchange coupling. Our structural tuning method gives a route to designing multiferroics.

More Details

Atomic-Scale Control of Electronic Structure and Ferromagnetic Insulating State in Perovskite Oxide Superlattices by Long-Range Tuning of BO6 Octahedra

Advanced Functional Materials

Lu, Ping L.

Control of BO6 octahedral rotations at the heterointerfaces of dissimilar ABO3 perovskites has emerged as a powerful route for engineering novel physical properties. However, its impact length scale is constrained at 2–6 unit cells close to the interface and the octahedral rotations relax quickly into bulk tilt angles away from interface. Here, a long-range (up to 12 unit cells) suppression of MnO6 octahedral rotations in La0.9Ba0.1MnO3 through the formation of superlattices with SrTiO3 can be achieved. The suppressed MnO6 octahedral rotations strongly modify the magnetic and electronic properties of La0.9Ba0.1MnO3 and hence create a new ferromagnetic insulating state with enhanced Curie temperature of 235 K. The emergent properties in La0.9Ba0.1MnO3 arise from a preferential occupation of the out-of-plane Mn d3z2−r2 orbital and a reduced Mn eg bandwidth, induced by the suppressed octahedral rotations. The realization of long-range tuning of BO6 octahedra via superlattices can be applicable to other strongly correlated perovskites for exploring new emergent quantum phenomena.

More Details

The Instability of Monolayer-Thick PbSe on VSe2

Chemistry of Materials

Lu, Ping L.

Two-dimensional monolayers derived from 3D bulk structures remain a relatively unexplored class of materials because of the challenge of stabilizing nonepitaxial interfaces. Here, we report an unusual reconstruction during the deposition of precursors when targeting the synthesis of heterostructures with an odd number of PbSe monolayers. Multilayer elemental precursors of Pb|Se + V|Se were deposited to have the correct number of atoms to form [(PbSe)1+δ]q(VSe2)1 where q is the number of PbSe monolayers in the heterostructure. Structural analysis of the self-assembled precursor via X-ray reflectivity, X-ray diffraction, and HAADF-STEM suggests three different behaviors upon deposition. Precursors with q ≥ 7 and even values of q have the targeted nanoarchitectures after deposition, which are maintained as the products are self-assembled through a near diffusionless process. Significant lateral surface diffusion occurred during the deposition of precursors with q = 1, 3, and 5, resulting in the precursor to have a different nanoarchitecture than targeted. Additional perpendicular long-range diffusion occurs during self-assembly of these precursors, resulting in different final products than targeted. Density functional theory (DFT) calculations of PbSe blocks show that the odd-numbered layers are less stable than the even-numbered layers, which suggests an energetic driving force for the observed rearrangement. This work highlights the importance of understanding the reaction mechanism when attempting to prepare 2D layers of constituents with bulk 3D structures.

More Details
Results 26–50 of 248
Results 26–50 of 248