Publications

Results 51–100 of 102

Search results

Jump to search filters

Demonstration of a silicon photonic transceiver for polarization-based discrete variable quantum key distribution

Optics InfoBase Conference Papers

Cai, Hong; Long, Christopher M.; Derose, Christopher; Boynton, Nicholas; Urayama, Junji; Pomerene, Andrew; Starbuck, Andrew L.; Trotter, Douglas C.; Davids, Paul; Lentine, Anthony L.

We demonstrate a silicon photonic transceiver circuit to implement polarization encoding/decoding for DV-QKD. The circuit is capable of encoding BB84 states with >30 dB PER and decoding with >20 dB ER.

More Details

Ultrahigh extinction on-chip amplitude modulators with broadband operation

Optics InfoBase Conference Papers

Liu, Sheng; Cai, Hong; Derose, Christopher; Davids, Paul; Pomerene, Andrew; Starbuck, Andrew L.; Trotter, Douglas C.; Camacho, Ryan C.; Urayama, Junji; Lentine, Anthony L.

We experimentally demonstrate amplitude modulators (AMs) with >65 dB extinction across over a 160 nm spectral range. The output optical phase response is also characterized when the amplitude is modulated.

More Details

Photon-Phonon-Enhanced Infrared Rectification in a Two-Dimensional Nanoantenna-Coupled Tunnel Diode

Physical Review Applied

Kadlec, Emil A.; Jarecki, Robert; Starbuck, Andrew L.; Peters, David; Davids, Paul

The interplay of strong infrared photon-phonon coupling with electromagnetic confinement in nanoscale devices is demonstrated to have a large impact on ultrafast photon-assisted tunneling in metal-oxide-semiconductor (MOS) structures. Infrared active optical phonon modes in polar oxides lead to strong dispersion and enhanced electric fields at material interfaces. We find that the infrared dispersion of SiO2 near a longitudinal optical phonon mode can effectively impedance match a photonic surface mode into a nanoscale tunnel gap that results in large transverse-field confinement. An integrated 2D nanoantenna structure on a distributed large-area MOS tunnel-diode rectifier is designed and built to resonantly excite infrared surface modes and is shown to efficiently channel infrared radiation into nanometer-scale gaps in these MOS devices. This enhanced-gap transverse-electric field is converted to a rectified tunneling displacement current resulting in a dc photocurrent. We examine the angular and polarization-dependent spectral photocurrent response of these 2D nanoantenna-coupled tunnel diodes in the photon-enhanced tunneling spectral region. Our 2D nanoantenna-coupled infrared tunnel-diode rectifier promises to impact large-area thermal energy harvesting and infrared direct detectors.

More Details

Enhanced infrared detectors using resonant structures combined with thin type-II superlattice absorbers

Applied Physics Letters

Goldflam, Michael; Kadlec, Emil A.; Olson, B.V.; Klem, John F.; Hawkins, Samuel D.; Parameswaran, Sivasubramanian; Coon, Wesley; Keeler, Gordon A.; Fortune, Torben; Tauke-Pedretti, Anna; Wendt, Joel R.; Shaner, Eric A.; Davids, Paul; Kim, Jin K.; Peters, David

We examined the spectral responsivity of a 1.77 μm thick type-II superlattice based long-wave infrared detector in combination with metallic nanoantennas. Coupling between the Fabry-Pérot cavity formed by the semiconductor layer and the resonant nanoantennas on its surface enables spectral selectivity, while also increasing peak quantum efficiency to over 50%. Electromagnetic simulations reveal that this high responsivity is a direct result of field-enhancement in the absorber layer, enabling significant absorption in spite of the absorber's subwavelength thickness. Notably, thinning of the absorbing material could ultimately yield lower photodetector noise through a reduction in dark current while improving photocarrier collection efficiency. The temperature- and incident-angle-independent spectral response observed in these devices allows for operation over a wide range of temperatures and optical systems. This detector paradigm demonstrates potential benefits to device performance with applications throughout the infrared.

More Details

High performance waveguide-coupled Ge-on-Si linear mode avalanche photodiodes

Optics Express

Davids, Paul; Martinez, Nicholas J.; Derose, Christopher; Brock, Reinhard W.; Starbuck, Andrew L.; Pomerene, Andrew; Lentine, Anthony L.; Trotter, Douglas C.

We present experimental results for a selective epitaxially grown Ge-on-Si separate absorption and charge multiplication (SACM) integrated waveguide coupled avalanche photodiode (APD) compatible with our silicon photonics platform. Epitaxially grown Ge-on-Si waveguide-coupled linear mode avalanche photodiodes with varying lateral multiplication regions and different charge implant dimensions are fabricated and their illuminated device characteristics and high-speed performance is measured. We report a record gain-bandwidth product of 432 GHz for our highest performing waveguide-coupled avalanche photodiode operating at 1510nm. Bit error rate measurements show operation with BER< 10-12, in the range from -18.3 dBm to -12 dBm received optical power into a 50 Ω load and open eye diagrams with 13 Gbps pseudo-random data at 1550 nm.

More Details

An adiabatic/diabatic polarization beam splitter

5th IEEE Photonics Society Optical Interconnects Conference, OI 2016

Cai, Hong; Boynton, Nicholas; Lentine, Anthony L.; Pomerene, Andrew; Trotter, Douglas C.; Starbuck, Andrew L.; Davids, Paul; Derose, Christopher

We demonstrate an on-chip polarization beam splitter (PBS), which is adiabatic for the transverse magnetic mode, and diabatic for the transverse electric mode. The PBS has a simple structure that is tolerant to manufacturing variations and exhibits high polarization extinction ratios over a wide bandwidth.

More Details

Application of plasmonic subwavelength structuring to enhance infrared detection

Proceedings of SPIE - The International Society for Optical Engineering

Davids, Paul; Kim, Jin K.; Leonhardt, Darin; Beechem, Thomas E.; Howell, Stephen W.; Ohta, Taisuke; Wendt, Joel R.; Montoya, John A.

Nanoantennas are an enabling technology for visible to terahertz components and may be used with a variety of detector materials. We have integrated subwavelength patterned metal nanoantennas with various detector materials for infrared detection: midwave infrared indium gallium arsenide antimonide detectors, longwave infrared graphene detectors, and shortwave infrared germanium detectors. Nanoantennas offer a means to make infrared detectors much thinner, thus lowering the dark current and improving performance. The nanoantenna converts incoming plane waves to more tightly bound and concentrated surface waves. The active material only needs to extend as far as these bound fields. In the case of graphene detectors, which are only one or two atomic layers thick, such field concentration is a necessity for usable device performance, as single pass absorption is insufficient. The nanoantenna is thus the enabling component of these thin devices. However nanoantenna integration and fabrication vary considerably across these platforms as do the considerations taken into account during design. Here we discuss the motivation for these devices and show examples for the three material systems. Characterization results are included for the midwave infrared detector. © 2014 SPIE.

More Details

Application of plasmonic subwavelength structuring to enhance infrared detection

Proceedings of SPIE - The International Society for Optical Engineering

Davids, Paul; Kim, Jin K.; Leonhardt, Darin; Beechem, Thomas E.; Howell, Stephen W.; Ohta, Taisuke; Wendt, Joel R.; Montoya, John A.

Nanoantennas are an enabling technology for visible to terahertz components and may be used with a variety of detector materials. We have integrated subwavelength patterned metal nanoantennas with various detector materials for infrared detection: midwave infrared indium gallium arsenide antimonide detectors, longwave infrared graphene detectors, and shortwave infrared germanium detectors. Nanoantennas offer a means to make infrared detectors much thinner, thus lowering the dark current and improving performance. The nanoantenna converts incoming plane waves to more tightly bound and concentrated surface waves. The active material only needs to extend as far as these bound fields. In the case of graphene detectors, which are only one or two atomic layers thick, such field concentration is a necessity for usable device performance, as single pass absorption is insufficient. The nanoantenna is thus the enabling component of these thin devices. However nanoantenna integration and fabrication vary considerably across these platforms as do the considerations taken into account during design. Here we discuss the motivation for these devices and show examples for the three material systems. Characterization results are included for the midwave infrared detector. © 2014 SPIE.

More Details

Plasmonics and nanoantennas for infrared detectors

2013 IEEE Photonics Conference, IPC 2013

Davids, Paul; Kim, Jin K.; Leonhardt, Darin; Wendt, Joel R.; Reinke, Charles M.

Detectors that take full advantage of the energy confinement offered by surface waves could have significant performance advantages in dark current and optical functionality. We use a subwavelength patterned metal nanoantenna structure to convert incoming plane waves to these surface waves. © 2013 IEEE.

More Details

Nanoantenna-enabled midwave infrared focal plane arrays

Proceedings of SPIE - The International Society for Optical Engineering

Peters, David; Reinke, Charles M.; Davids, Paul; Klem, John F.; Leonhardt, Darin; Wendt, Joel R.; Kim, Jin K.; Samora, Sally

We demonstrate the effects of integrating a nanoantenna to a midwave infrared (MWIR) focal plane array (FPA). We model an antenna-coupled photodetector with a nanoantenna fabricated in close proximity to the active material of a photodetector. This proximity allows us to take advantage of the concentrated plasmonic fields of the nanoantenna. The role of the nanoantenna is to convert free-space plane waves into surface plasmons bound to a patterned metal surface. These plasmonic fields are concentrated in a small volume near the metal surface. Field concentration allows for a thinner layer of absorbing material to be used in the photodetector design and promises improvements in cutoff wavelength and dark current (higher operating temperature). While the nanoantenna concept may be applied to any active photodetector material, we chose to integrate the nanoantenna with an InAsSb photodiode. The geometry of the nanoantenna-coupled detector is optimized to give maximal carrier generation in the active region of the photodiode, and fabrication processes must be altered to accommodate the nanoantenna structure. The intensity profiles and the carrier generation rates in the photodetector active layers are determined by finite element method simulations, and iteration between optical nanoantenna simulation and detector modeling is used to optimize the device structure. © 2012 SPIE.

More Details

Channeling light into quantum-scale gaps

Physical Review B - Condensed Matter and Materials Physics

Kekatpure, Rohan D.; Davids, Paul

We develop a discrete plasmonic mode-matching technique to investigate the ultimate limits to plasmonic light concentration down to the length scales required for observation of quantum-mechanical phenomena, including plasmon-assisted electron tunneling. Our mode-matching calculations, verified by direct numerical solution of Maxwell's equations, indicate achievable coupling efficiencies of >20% into symmetric bound gap plasmon modes in sub-10-nm gaps. For a given operating wavelength and a choice of material parameters, we demonstrate the existence of a specific width that maximizes enhancement of the electromagnetic field coupled into the gap. More generally, our calculations establish an intuitive and a computationally efficient framework for determining coupling efficiencies in and out of quantum-scale waveguides. © 2011 American Physical Society.

More Details

Plasmonic integrated optics : going the last few microns

Davids, Paul

Plasmonic integrated optics is an attempt to bridge the length scale gap between optics and nanometer scale electronic devices. Here we present a hybrid optical interconnect scheme which utilizes low loss dielectric waveguides for global interconnection and plasmonic structures for tightly confining light for local routing and mode manipulation.

More Details
Results 51–100 of 102
Results 51–100 of 102