Publications

Results 26–50 of 247

Search results

Jump to search filters

Are solid-state batteries safer than lithium-ion batteries?

Joule

Bates, Alex M.; Preger, Yuliya P.; Torres-Castro, Loraine T.; Harrison, Katharine L.; Harris, Stephen J.; Hewson, John C.

All-solid-state batteries are often assumed to be safer than conventional Li-ion ones. In this work, we present the first thermodynamic models to quantitatively evaluate solid-state and Li-ion battery heat release under several failure scenarios. The solid-state battery analysis is carried out with an Li7La3Zr2O12 solid electrolyte but can be extended to other configurations using the accompanying spreadsheet. We consider solid-state batteries that include a relatively small amount of liquid electrolyte, which is often added at the cathode to reduce interfacial resistance. While the addition of small amounts of liquid electrolyte increases heat release under specific failure scenarios, it may be small enough that other considerations, such as manufacturability and performance, are more important commercially. We show that short-circuited all-solid-state batteries can reach temperatures significantly higher than conventional Li-ion, which could lead to fire through flammable packaging and/or nearby materials. Our work highlights the need for quantitative safety analyses of solid-state batteries.

More Details

Tritium Fires: Simulation and Safety Assessment

Brown, Alexander B.; Shurtz, Randy S.; Takahashi, Lynelle K.; Coker, Eric N.; Hewson, John C.; Hobbs, Michael L.

This is the Sandia report from a joint NSRD project between Sandia National Labs and Savannah River National Labs. The project involved development of simulation tools and data intended to be useful for tritium operations safety assessment. Tritium is a synthetic isotope of hydrogen that has a limited lifetime, and it is found at many tritium facilities in the form of elemental gas (T2). The most serious risk of reasonable probability in an accident scenario is when the tritium is released and reacts with oxygen to form a water molecule, which is subsequently absorbed into the human body. This tritium oxide is more readily absorbed by the body and therefore represents a limiting factor for safety analysis. The abnormal condition of a fire may result in conversion of the safer T2 inventory to the more hazardous oxidized form. It is this risk that tends to govern the safety protocols. Tritium fire datasets do not exist, so prescriptive safety guidance is largely conservative and reliant on means other than testing to formulate guidelines. This can have a consequence in terms of expensive and/or unnecessary mitigation design, handling protocols, and operational activities. This issue can be addressed through added studies on the behavior of tritium under representative conditions. Due to the hazards associated with the tests, this is being approached mainly from a modeling and simulation standpoint and surrogate testing. This study largely establishes the capability to generate simulation predictions with sufficiently credible characteristics to be accepted for safety guidelines as a surrogate for actual data through a variety of testing and modeling activities.

More Details

Energy Redistribution as a Method for Mitigating Risk of Propagating Thermal Runaway

2022 IEEE Energy Conversion Congress and Exposition, ECCE 2022

Mueller, Jacob M.; Preger, Yuliya P.; Kurzawski, Andrew K.; Garcia Rodriguez, Luciano A.; Hewson, John C.

Propagating thermal runaway events are a significant threat to utility-scale storage installations. A propagating thermal runaway event is a cascading series of failures in which energy released from a failed cell triggers subsequent failures in nearby cells. Without intervention, propagation can turn an otherwise manageable single cell failure into a full system conflagration. This study presents a method of mitigating the severity of propagating thermal runaway events in utility-scale storage systems by leveraging the capabilities of a module-interfaced power conversion architecture. The method involves strategic depletion of storage modules to delay or arrest propagation, reducing the total thermal energy released in the failure event. The feasibility of the method is assessed through simulations of propagating thermal runaway events in a 160 kW/80 kWh energy storage system.

More Details

Validating a Fire Simulation Tool with a Large-scale Helium Plume Dataset

Proceedings of the Thermal and Fluids Engineering Summer Conference

Brown, Alexander B.; Hewson, John C.

Fires of practical interest are often large in scale and involve turbulent behavior. Fire simulation tools are often utilized in an under-resolved prediction to assess fire behavior. Data are scarce for large fires because they are difficult to instrument. A helium plume scenario has been used as a surrogate for much of the fire phenomenology (O'Hern et al., 2005), including buoyancy, mixing, and advection. A clean dataset of this nature makes an excellent platform for assessing model accuracy. We have been participating in a community effort to validate fire simulation tools, and the SIERRA/Fuego code is compared here with the historical dataset. Our predictions span a wide range of length-scales, and comparisons are made to species mass fraction and two velocity components for a number of heights in the core of the plume. We detail our approach to the comparisons, which involves some accommodation for the uncertainty in the inflow boundary condition from the test. We show evolving improvement in simulation accuracy with increasing mesh resolution and benchmark the accuracy through comparisons with the data.

More Details

CHARACTERIZATION OF VENTED GAS PREDICTIONS IN LITHIUM-ION MODELING WITH 1-D THERMAL RUNAWAY (LIM1TR)

Proceedings of ASME 2022 Heat Transfer Summer Conference, HT 2022

Qatramez, Ala'E; Kurzawski, Andrew K.; Hewson, John C.; Parker, Michael; Porter, Adam; Foti, Daniel; Headley, Alexander J.

Thermal runaway and its propagation are major safety issues in containerized lithium-ion battery energy storage systems. While conduction-driven propagation has received much attention, the thermal hazards associated with propagation via hot gases vented from failing cells are still not fully understood. Vented gases can lead to global safety issues in containerized systems, via heat transfer to other parts of the system and potential combustion hazards. In this work, we validate the characteristics of vented gases from cells undergoing thermal runaway in the thermal propagation model LIM1TR (Lithium-ion Modeling with 1-D Thermal Runaway). In particular, we assess the evolution of vented gases, venting time, and temperature profiles of single cell and multi-cell arrays based on experiments performed in Archibald et al (Fire Technology, 2020). While several metrics for estimating the venting time are assessed, a metric based on the CO2 generation results in consistent predictions. Vented gas evolution, and venting times predicted by the simulations are consistent with those estimated during the experiments. The simulation resolution and other model parameters, especially the use of an intra-particle diffusion limiter, have a large role in prediction of venting time.

More Details

Energy Redistribution as a Method for Mitigating Risk of Propagating Thermal Runaway

2022 IEEE Energy Conversion Congress and Exposition, ECCE 2022

Mueller, Jacob M.; Preger, Yuliya P.; Kurzawski, Andrew K.; Garcia Rodriguez, Luciano A.; Hewson, John C.

Propagating thermal runaway events are a significant threat to utility-scale storage installations. A propagating thermal runaway event is a cascading series of failures in which energy released from a failed cell triggers subsequent failures in nearby cells. Without intervention, propagation can turn an otherwise manageable single cell failure into a full system conflagration. This study presents a method of mitigating the severity of propagating thermal runaway events in utility-scale storage systems by leveraging the capabilities of a module-interfaced power conversion architecture. The method involves strategic depletion of storage modules to delay or arrest propagation, reducing the total thermal energy released in the failure event. The feasibility of the method is assessed through simulations of propagating thermal runaway events in a 160 kW/80 kWh energy storage system.

More Details

Soot Predictions with a Laminar Flamelet Combustion Model in SIERRA/Fuego on a Coflow Scenario

Kurzawski, Andrew K.; Hansen, Michael A.; Hewson, John C.

This report describes an assessment of flamelet based soot models in a laminar ethylene coflow flame with a good selection of measurements suitable for model validation. Overall flow field and temperature predictions were in good agreement with available measurements. Soot profiles were in good agreement within the flame except for near the centerline where imperfections with the acetylene-based soot-production model are expected to be greatest. The model was challenged to predict the transition between non-sooting and sooting conditions with non-negligible soot emissions predicted even down to small flow rates or flame sizes. This suggests some possible deficiency in the soot oxidation models that might alter the amount of smoke emissions from flames, though this study cannot quantify the magnitude of the effect for large fires.

More Details

DNS/LES Study of Representative Wall-Bounded Turbulent Flows using SIERRA/Fuego

Koo, Heeseok; Hewson, John C.; Brown, Alexander B.; Knaus, Robert C.; Kurzawski, Andrew K.; Clemenson, Michael D.

This report summarizes a series of SIERRA/Fuego validation efforts of turbulent flow models on canonical wall-bounded configurations. In particular, direct numerical simulations (DNS) and large eddy simulations (LES) turbulence models are tested on a periodic channel, a periodic pipe, and an open jet for which results are compared to the velocity profiles obtained theoretically or experimentally. Velocity inlet conditions for channel and pipe flows are developed for application to practical simulations. To show this capability, LES is performed over complex terrain in the form of two natural hills and the results are compared with other flow solvers. The practical purpose of the report is to document the creation of inflow boundary conditions of fully developed turbulent flows for other LES calculations where the role of inflow turbulence is critical.

More Details

Predicting large-scale pool fire dynamics using an unsteady flamelet- And large-eddy simulation-based model suite

Physics of Fluids

Domino, Stefan P.; Hewson, John C.; Knaus, Robert C.; Hansen, Michael A.

A low-Mach, unstructured, large-eddy-simulation-based, unsteady flamelet approach with a generalized heat loss combustion methodology (including soot generation and consumption mechanisms) is deployed to support a large-scale, quiescent, 5-m JP-8 pool fire validation study. The quiescent pool fire validation study deploys solution sensitivity procedures, i.e., the effect of mesh and time step refinement on capturing key fire dynamics such as fingering and puffing, as mesh resolutions approach O(1) cm. A novel design-order, discrete-ordinate-method discretization methodology is established by use of an analytical thermal/participating media radiation solution on both low-order hexahedral and tetrahedral mesh topologies in addition to quadratic hexahedral elements. The coupling between heat losses and the flamelet thermochemical state is achieved by augmenting the unsteady flamelet equation set with a heat loss source term. Soot and radiation source terms are determined using flamelet approaches for the full range of heat losses experienced in fire applications including radiative extinction. The proposed modeling and simulation paradigm are validated using pool surface radiative heat flux, maximum centerline temperature location, and puffing frequency data, all of which are predicted within 10% accuracy. Simulations demonstrate that under-resolved meshes predict an overly conservative radiative heat flux magnitude with improved comparisons as compared to a previously deployed hybrid Reynolds-averaged Navier-Stokes/eddy dissipation concept-based methodology.

More Details

Investigating the Role of Energy Density in Thermal Runaway of Lithium-Ion Batteries with Accelerating Rate Calorimetry

Journal of the Electrochemical Society

Lamb, Joshua H.; Torres-Castro, Loraine T.; Shurtz, Randy S.; Hewson, John C.; Preger, Yuliya P.

This work uses accelerating rate calorimetry to evaluate the impact of cell chemistry, state of charge, cell capacity, and ultimately cell energy density on the total energy release and peak heating rates observed during thermal runaway of Li-ion batteries. While the traditional focus has been using calorimetry to compare different chemistries in cells of similar sizes, this work seeks to better understand how applicable small cell data is to understand the thermal runaway behavior of large cells as well as determine if thermal runaway behaviors can be more generally tied to aspects of lithium-ion cells such as total stored energy and specific energy. We have found a strong linear correlation between the total enthalpy of the thermal runaway process and the stored energy of the cell, apparently independent of cell size and state of charge. We have also shown that peak heating rates and peak temperatures reached during thermal runaway events are more closely tied to specific energy, increasing exponentially in the case of peak heating rates.

More Details
Results 26–50 of 247
Results 26–50 of 247