Publications

Results 251–253 of 253

Search results

Jump to search filters

Predicting fire suppression in a simulated engine nacelle

Hewson, John C.

The Vulcan fire-field model is employed to simulate the evolution of pool fires and the distribution of fire suppressants in a engine nacelle simulator. The objective is to identify conditions for which suppression will and will not be successful in order to (1) provide input on experimental design and (2) to test the model's predictive capabilities through comparison with future test results. Pool fires, where the fuel pool is on the bottom of the nacelle, have been selected for these tests because they have been identified as among the most challenging to suppress. Modeling of the production HFC-125 fire suppression system predicts that all pool fires are extinguished. Removing nozzles and reducing the rate of suppressant injection eventually lead to a predicted failure to suppress the fires. The stability of the fires, and therefore the difficulty in extinguishing them, depends on a variety of additional factors as discussed in the text.

More Details

Non-premixed turbulent jet mixing using LES with the FMDF model

International Symposium on Combustion, Abstracts of Works-in-Progress Posters

Glaze, David J.; Frankel, S.H.; Hewson, John C.

Many practical combustion devices and uncontrolled fires involve high Reynolds number nonpremixed turbulent flames that feature non-equilibrium finite-rate chemistry effects, e.g., local flame extinction and reignition, where enhanced transport of mass and heat away from the flame due to rapid turbulent mixing exceeds the local burning rate. Probability density function methods have shown promise in predicting piloted nonpremixed CH4-air flames over a range of Reynolds numbers and varying degrees of flame extinction and reignition. A study was carried out to quantify and characterize the kinetics of localized extinction and reignition in the Sandia flames D, E, and F, for which detailed velocity and scalar data exists. PDF methods in large eddy simulation to predict the filtered mass density function (FMDF) was used. A simple idealized mixing simulation was performed of a nonpremixed turbulent fuel jet in an air co-flow. Mixing statistics from the Monte Carlo-based FMDF solution of the chemical species scalar were compared to those from a more traditional Eulerian mixing simulation using gradient transport-based subgrid closure models. The FMDF solution will be performed with the Euclidian minimum spanning tree mixing model that uses the phenomenological connection between physical space and state space for mixing events. This is an abstract of a paper presented at the 30th International Symposium on Combustion (Chicago, IL 7/25-30/2004).

More Details
Results 251–253 of 253
Results 251–253 of 253