Geomagnetic disturbances (GMDs) give rise to geomagnetically induced currents (GICs) on the earth's surface which find their way into power systems via grounded transformer neutrals. The quasi-dc nature of the GICs results in half-cycle saturation of the power grid transformers which in turn results in transformer failure, life reduction, and other adverse effects. Therefore, transformers need to be more resilient to dc excitation. This paper sets forth dc immunity metrics for transformers. Furthermore, this paper sets forth a novel transformer architecture and a design methodology which employs the dc immunity metrics to make it more resilient to dc excitation. This is demonstrated using a time-stepping 2D finite element analysis (FEA) simulation. It was found that a relatively small change in the core geometry significantly increases transformer resiliency with respect to dc excitation.
Awile, Omar; Knight, James C.; Nowotny, Thomas; Aimone, James B.; Diesmann, Markus; Schurmann, Felix
At the turn of the millennium the computational neuroscience community realized that neuroscience was in a software crisis: software development was no longer progressing as expected and reproducibility declined. The International Neuroinformatics Coordinating Facility (INCF) was inaugurated in 2007 as an initiative to improve this situation. The INCF has since pursued its mission to help the development of standards and best practices. In a community paper published this very same year, Brette et al. tried to assess the state of the field and to establish a scientific approach to simulation technology, addressing foundational topics, such as which simulation schemes are best suited for the types of models we see in neuroscience. In 2015, a Frontiers Research Topic “Python in neuroscience” by Muller et al. triggered and documented a revolution in the neuroscience community, namely in the usage of the scripting language Python as a common language for interfacing with simulation codes and connecting between applications. The review by Einevoll et al. documented that simulation tools have since further matured and become reliable research instruments used by many scientific groups for their respective questions. Open source and community standard simulators today allow research groups to focus on their scientific questions and leave the details of the computational work to the community of simulator developers. A parallel development has occurred, which has been barely visible in neuroscientific circles beyond the community of simulator developers: Supercomputers used for large and complex scientific calculations have increased their performance from ~10 TeraFLOPS (1013 floating point operations per second) in the early 2000s to above 1 ExaFLOPS (1018 floating point operations per second) in the year 2022. This represents a 100,000-fold increase in our computational capabilities, or almost 17 doublings of computational capability in 22 years. Moore's law (the observation that it is economically viable to double the number of transistors in an integrated circuit every other 18–24 months) explains a part of this; our ability and willingness to build and operate physically larger computers, explains another part. It should be clear, however, that such a technological advancement requires software adaptations and under the hood, simulators had to reinvent themselves and change substantially to embrace this technological opportunity. It actually is quite remarkable that—apart from the change in semantics for the parallelization—this has mostly happened without the users knowing. The current Research Topic was motivated by the wish to assemble an update on the state of neuroscientific software (mostly simulators) in 2022, to assess whether we can see more clearly which scientific questions can (or cannot) be asked due to our increased capability of simulation, and also to anticipate whether and for how long we can expect this increase of computational capabilities to continue.
Prescriptive approaches for the cybersecurity of digital nuclear instrumentation and control (I&C) systems can be cumbersome and costly. These considerations are of particular concern for advanced reactors that implement digital technologies for monitoring, diagnostics, and control. A risk-informed performance-based approach is needed to enable the efficient design of secure digital I&C systems for nuclear power plants. This paper presents a tiered cybersecurity analysis (TCA) methodology as a graded approach for cybersecurity design. The TCA is a sequence of analyses that align with the plant, system, and component stages of design. Earlier application of the TCA in the design process provides greater opportunity for an efficient graded approach and defense-in-depth. The TCA consists of three tiers. Tier 1 is design and impact analysis. In Tier 1 it is assumed that the adversary has control over all digital systems, components, and networks in the plant, and that the adversary is only constrained by the physical limitations of the plant design. The plant's safety design features are examined to determine whether the consequences of an attack by this cyber-enabled adversary are eliminated or mitigated. Accident sequences that are not eliminated or mitigated by security by design features are examined in Tier 2 analysis. In Tier 2, adversary access pathways are identified for the unmitigated accident sequences, and passive measures are implemented to deny system and network access to those pathways wherever feasible. Any systems with remaining susceptible access pathways are then examined in Tier 3. In Tier 3, active defensive cybersecurity architecture features and cybersecurity plan controls are applied to deny the adversary the ability to conduct the tasks needed to cause a severe consequence. Tier 3 is not performed in this analysis because of the design maturity required for this tier of analysis.
Modern Industrial Control Systems (ICS) attacks evade existing tools by using knowledge of ICS processes to blend their activities with benign Supervisory Control and Data Acquisition (SCADA) operation, causing physical world damages. We present Scaphy to detect ICS attacks in SCADA by leveraging the unique execution phases of SCADA to identify the limited set of legitimate behaviors to control the physical world in different phases, which differentiates from attacker's activities. For example, it is typical for SCADA to setup ICS device objects during initialization, but anomalous during process-control. To extract unique behaviors of SCADA execution phases, Scaphy first leverages open ICS conventions to generate a novel physical process dependency and impact graph (PDIG) to identify disruptive physical states. Scaphy then uses PDIG to inform a physical process-aware dynamic analysis, whereby code paths of SCADA process-control execution is induced to reveal API call behaviors unique to legitimate process-control phases. Using this established behavior, Scaphy selectively monitors attacker's physical world-targeted activities that violates legitimate process-control behaviors. We evaluated Scaphy at a U.S. national lab ICS testbed environment. Using diverse ICS deployment scenarios and attacks across 4 ICS industries, Scaphy achieved 95% accuracy & 3.5% false positives (FP), compared to 47.5% accuracy and 25% FP of existing work. We analyze Scaphy's resilience to futuristic attacks where attacker knows our approach.
Neural ordinary differential equations (NODEs) have recently regained popularity as large-depth limits of a large class of neural networks. In particular, residual neural networks (ResNets) are equivalent to an explicit Euler discretization of an underlying NODE, where the transition from one layer to the next is one time step of the discretization. The relationship between continuous and discrete neural networks has been of particular interest. Notably, analysis from the ordinary differential equation viewpoint can potentially lead to new insights for understanding the behavior of neural networks in general. In this work, we take inspiration from differential equations to define the concept of stiffness for a ResNet via the interpretation of a ResNet as the discretization of a NODE. Here, we then examine the effects of stiffness on the ability of a ResNet to generalize, via computational studies on example problems coming from climate and chemistry models. We find that penalizing stiffness does have a unique regularizing effect, but we see no benefit to penalizing stiffness over L2 regularization (penalization of network parameter norms) in terms of predictive performance.
Computational simulation allows scientists to explore, observe, and test physical regimes thought to be unattainable. Validation and uncertainty quantification play crucial roles in extrapolating the use of physics-based models. Bayesian analysis provides a natural framework for incorporating the uncertainties that undeniably exist in computational modeling. However, the ability to perform quality Bayesian and uncertainty analyses is often limited by the computational expense of first-principles physics models. In the absence of a reliable low-fidelity physics model, phenomenological surrogate or machine learned models can be used to mitigate this expense; however, these data-driven models may not adhere to known physics or properties. Furthermore, the interactions of complex physics in high-fidelity codes lead to dependencies between quantities of interest (QoIs) that are difficult to quantify and capture when individual surrogates are used for each observable. Although this is not always problematic, predicting multiple QoIs with a single surrogate preserves valuable insights regarding the correlated behavior of the target observables and maximizes the information gained from available data. A method of constructing a Gaussian Process (GP) that emulates multiple QoIs simultaneously is presented. As an exemplar, we consider Magnetized Liner Inertial Fusion, a fusion concept that relies on the direct compression of magnetized, laser-heated fuel by a metal liner to achieve thermonuclear ignition. Magneto-hydrodynamics (MHD) codes calculate diagnostics to infer the state of the fuel during experiments, which cannot be measured directly. The calibration of these diagnostic metrics is complicated by sparse experimental data and the expense of high-fidelity neutron transport models. The development of an appropriate surrogate raises long-standing issues in modeling and simulation, including calibration, validation, and uncertainty quantification. The performance of the proposed multi-output GP surrogate model, which preserves correlations between QoIs, is compared to the standard single-output GP for a 1D realization of the MagLIF experiment.
When exposed to mechanical environments such as shock and vibration, electrical connections may experience increased levels of contact resistance associated with the physical characteristics of the electrical interface. A phenomenon known as electrical chatter occurs when these vibrations are large enough to interrupt the electric signals. It is critical to understand the root causes behind these events because electrical chatter may result in unexpected performance or failure of the system. The root causes span a variety of fields, such as structural dynamics, contact mechanics, and tribology. Therefore, a wide range of analyses are required to fully explore the physical phenomenon. This paper intends to provide a better understanding of the relationship between structural dynamics and electrical chatter events. Specifically, electrical contact assembly composed of a cylindrical pin and bifurcated structure were studied using high fidelity simulations. Structural dynamic simulations will be performed with both linear and nonlinear reduced-order models (ROM) to replicate the relevant structural dynamics. Subsequent multi-physics simulations will be discussed to relate the contact mechanics associated with the dynamic interactions between the pin and receptacle to the chatter. Each simulation method was parametrized by data from a variety of dynamic experiments. Both structural dynamics and electrical continuity were observed in both the simulation and experimental approaches, so that the relationship between the two can be established.
Multiple rotors on single structures have long been proposed to increase wind turbine energy capture with no increase in rotor size, but at the cost of additional mechanical complexity in the yaw and tower designs. Standard turbines on their own very-closely-spaced towers avoid these disadvantages but create a significant disadvantage; for some wind directions the wake turbulence of a rotor enters the swept area of a very close downwind rotor causing low output, fatigue stress, and changes in wake recovery. Knowing how the performance of pairs of closely spaced rotors varies with wind direction is essential to design a layout that maximizes the useful directions and minimizes the losses and stress at other directions. In the current work, the high-fidelity large-eddy simulation (LES) code Exa-Wind/Nalu-Wind is used to simulate the wake interactions from paired-rotor configurations in a neutrally stratified atmospheric boundary layer to investigate performance and feasibility. Each rotor pair consists of two Vestas V27 turbines with hub-to-hub separation distances of 1.5 rotor diameters. The on-design wind direction results are consistent with previous literature. For an off-design wind direction of 26.6°, results indicate little change in power and far-wake recovery relative to the on-design case. At a direction of 45.0°, significant rotor-wake interactions produce an increase in power but also in far-wake velocity deficit and turbulence intensity. A severely off-design case is also considered.
A high altitude electromagnetic pulse (HEMP) or other similar geomagnetic disturbance (GMD) has the potential to severely impact the operation of large-scale electric power grids. By introducing low-frequency common-mode (CM) currents, these events can impact the performance of key system components such as large power transformers. In this work, a solid-state transformer (SST) that can replace susceptible equipment and improve grid resiliency by safely absorbing these CM insults is described. An overview of the proposed SST power electronics and controls architecture is provided, a system model is developed, and the performance of the SST in response to a simulated CM insult is evaluated. Compared to a conventional magnetic transformer, the SST is found to recover quickly from the insult while maintaining nominal ac input/output behavior.
While research in multiple-input/multiple-output (MIMO) random vibration testing techniques, control methods, and test design has been increasing in recent years, research into specifications for these types of tests has not kept pace. This is perhaps due to the very particular requirement for most MIMO random vibration control specifications – they must be narrowband, fully populated cross-power spectral density matrices. This requirement puts constraints on the specification derivation process and restricts the application of many of the traditional techniques used to define single-axis random vibration specifications, such as averaging or straight-lining. This requirement also restricts the applicability of MIMO testing by requiring a very specific and rich field test data set to serve as the basis for the MIMO test specification. Here, frequency-warping and channel averaging techniques are proposed to soften the requirements for MIMO specifications with the goal of expanding the applicability of MIMO random vibration testing and enabling tests to be run in the absence of the necessary field test data.
Uncertainty quantification (UQ) plays a critical role in verifying and validating forward integrated computational materials engineering (ICME) models. Among numerous ICME models, the crystal plasticity finite element method (CPFEM) is a powerful tool that enables one to assess microstructure-sensitive behaviors and thus, bridge material structure to performance. Nevertheless, given its nature of constitutive model form and the randomness of microstructures, CPFEM is exposed to both aleatory uncertainty (microstructural variability), as well as epistemic uncertainty (parametric and model-form error). Therefore, the observations are often corrupted by the microstructure-induced uncertainty, as well as the ICME approximation and numerical errors. In this work, we highlight several ongoing research topics in UQ, optimization, and machine learning applications for CPFEM to efficiently solve forward and inverse problems. The first aspect of this work addresses the UQ of constitutive models for epistemic uncertainty, including both phenomenological and dislocation-density-based constitutive models, where the quantities of interest (QoIs) are related to the initial yield behaviors. We apply a stochastic collocation (SC) method to quantify the uncertainty of the three most commonly used constitutive models in CPFEM, namely phenomenological models (with and without twinning), and dislocation-density-based constitutive models, for three different types of crystal structures, namely face-centered cubic (fcc) copper (Cu), body-centered cubic (bcc) tungsten (W), and hexagonal close packing (hcp) magnesium (Mg). The second aspect of this work addresses the aleatory and epistemic uncertainty with multiple mesh resolutions and multiple constitutive models by the multi-index Monte Carlo method, where the QoI is also related to homogenized materials properties. We present a unified approach that accounts for various fidelity parameters, such as mesh resolutions, integration time-steps, and constitutive models simultaneously. We illustrate how multilevel sampling methods, such as multilevel Monte Carlo (MLMC) and multi-index Monte Carlo (MIMC), can be applied to assess the impact of variations in the microstructure of polycrystalline materials on the predictions of macroscopic mechanical properties. The third aspect of this work addresses the crystallographic texture study of a single void in a cube. Using a parametric reduced-order model (also known as parametric proper orthogonal decomposition) with a global orthonormal basis as a model reduction technique, we demonstrate that the localized dynamic stress and strain fields can be predicted as a spatiotemporal problem.
Austenitic stainless steels are used in high-pressure hydrogen containment infrastructure for their resistance to hydrogen embrittlement. Applications for the use of austenitic stainless steels include pressure vessels, tubing, piping, valves, fittings and other piping components. Despite their resistance to brittle behavior in the presence of hydrogen, austenitic stainless steels can exhibit degraded fracture performance. The mechanisms of hydrogen-assisted fracture, however, remain elusive, which has motivated continued research on these alloys. There are two principal approaches to evaluate the influence of gaseous hydrogen on mechanical properties: internal and external hydrogen, respectively. The austenite phase has high solubility and low diffusivity of hydrogen at room temperature, which enables introduction of hydrogen into the material through thermal precharging at elevated temperature and pressure; a condition referred to as internal hydrogen. H-precharged material can subsequently be tested in ambient conditions. Alternatively, mechanical testing can be performed while test coupons are immersed in gaseous hydrogen thereby evaluating the effects of external hydrogen on property degradation. The slow diffusivity of hydrogen in austenite at room temperature can often be a limiting factor in external hydrogen tests and may not properly characterize lower bound fracture behavior in components exposed to hydrogen for long time periods. In this study, the differences between internal and external hydrogen environments are evaluated in the context of fracture resistance measurements. Fracture testing was performed on two different forged austenitic stainless steel alloys (304L and XM-11) in three different environments: 1) non-charged and tested in gaseous hydrogen at pressure of 1,000 bar (external H2), 2) hydrogen precharged and tested in air (internal H), 3) hydrogen precharged and tested in 1,000 bar H2 (internal H + external H2). For all environments, elastic-plastic fracture measurements were conducted to establish J-R curves following the methods of ASTM E1820. Following fracture testing, fracture surfaces were examined to reveal predominant fracture mechanisms for the different conditions and to characterize differences (and similarities) in the macroscale fracture processes associated with these environmental conditions.
Proceedings - Electronic Components and Technology Conference
Li, Xingchen; Jia, Xiaofan; Kim, Joon W.; Moon, Kyoung S.; Jordan, Matthew J.; Swaminathan, Madhavan
This paper presents a die-embedded glass interposer with minimum warpage for 5G/6G applications. The interposer performs high integration with low-loss interconnects by embedding multiple chips in the same glass substrate and interconnecting the chips through redistributive layers (RDL). Novel processes for cavity creation, multi-die embedding, carrier- less RDL build up and heat spreader attachment are proposed and demonstrated in this work. Performance of the interposer from 1 GHz to 110 GHz are evaluated. This work provides an advanced packaging solution for low-loss die-to-die and die-to-package interconnects, which is essential to high performance wireless system integration.
Michelsen, Hope A.; Boigne, Emeric; Schrader, Paul E.; Johansson, K.O.; Campbell, Matthew F.; Bambha, Ray P.; Ihme, Matthias
We have developed a new method for extracting particulates and gas-phase species from flames. This technique involves directing a small jet of inert gas through the flame to entrain the sample, which is then collected by a probe on the other side of the flame. This sampling technique does not require inserting a probe or sampling surface into the flame and thus avoids effects on the flame due to conductive cooling by the probe and recombination, quenching, and deposition reactions at the sampling surface in contact with the flame. This approach thus allows for quenching and diluting the sample during extraction while minimizing the perturbations to the flame that have a substantial impact on flame chemistry. It also circumvents clogging of the probe with soot, a problem that commonly occurs when a probe is inserted into a hydrocarbon-rich premixed or diffusion flame. In this paper, we present experimental results demonstrating the application of this technique to the extraction of soot particles from a co-flow ethylene/air diffusion flame. The extracted samples were analyzed using transmission electron microscopy (TEM), and the results are compared with measurements using in situ diagnostics, i.e., laser-induced incandescence and small-angle X-ray scattering. We also compare TEM images of particles sampled using this approach with those sampled using rapid-insertion thermophoretic sampling, a common technique for extracting particles from flames. In addition, we have performed detailed numerical simulations of the flow field associated with this new sampling approach to assess the impact it has on the flame structure and sample following extraction. The results presented in this paper demonstrate that this jet-entrainment sampling technique has significant advantages over other common sample-extraction methods.
Puerto Rico faced a double strike from hurricanes Irma and Maria in 2017. The resulting damage required a comprehensive rebuild of electric infrastructure. There are plans and pilot projects to rebuild with microgrids to increase resilience. This paper provides a techno-economic analysis technique and case study of a potential future community in Puerto Rico that combines probabilistic microgrid design analysis with tiered circuits in building energy modeling. Tiered circuits in buildings allow electric load reduction via remote disconnection of non-critiñl circuits during an emergency. When coupled to a microgrid, tiered circuitry can reduce the chances of a microgrid's storage and generation resources being depleted. The analysis technique is applied to show 1) Approximate cost savings due to a tiered circuit structure and 2) Approximate cost savings gained by simultaneously considering resilience and sustainability constraints in the microgrid optimization. The analysis technique uses a resistive capacitive thermal model with load profiles for four tiers (tier 1-3 and non-critical loads). Three analyses were conducted using: 1) open-source software called Tiered Energy in Buildings and 2) the Microgrid Design Toolkit. For a fossil fuel based microgrid 30% of the total microgrid costs of 1.18 million USD were calculated where the non-tiered case keeps all loads 99.9% available and the tiered case keeps tier 1 at 99.9%, tier 2 at 95%, tier 3 at 80% availability, with no requirement on non-critical loads. The same comparison for a sustainable microgrid showed 8% cost savings on a 5.10 million USD microgrid due to tiered circuits. The results also showed 6-7% cost savings when our analysis technique optimizes sustainability and resilience simultaneously in comparison to doing microgrid resilience analysis and renewables net present value analysis independently. Though highly specific to our case study, similar assessments using our analysis technique can elucidate value of tiered circuits and simultaneous consideration of sustainability and resilience in other locations.
Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE
Laros, James H.; Davis, Jacob; Sharman, Krish; Tom, Nathan; Husain, Salman
Experiments were conducted on a wave tank model of a bottom raised oscillating surge wave energy converter (OSWEC) model in regular waves. The OSWEC model shape was a thin rectangular flap, which was allowed to pitch in response to incident waves about a hinge located at the intersection of the flap and the top of the supporting foundation. Torsion springs were added to the hinge in order to position the pitch natural frequency at the center of the wave frequency range of the wave maker. The flap motion as well as the loads at the base of the foundation were measured. The OSWEC was modeled analytically using elliptic functions in order to obtain closed form expressions for added mass and radiation damping coefficients, along with the excitation force and torque. These formulations were derived and reported in a previous publication by the authors. While analytical predictions of the foundation loads agree very well with experiments, large discrepancies are seen in the pitch response close to resonance. These differences are analyzed by conducting a sensitivity study, in which system parameters, including damping and added mass values, are varied. The likely contributors to the differences between predictions and experiments are attributed to tank reflections, standing waves that can occur in long, narrow wave tanks, as well as the thin plate assumption employed in the analytical approach.
We present the SEU sensitivity and SEL results from proton and heavy ion testing performed on NVIDIA Xavier NX and AMD Ryzen V1605B GPU devices in both static and dynamic operation.
Mann, James B.; Mohanty, Debapriya P.; Kustas, Andrew K.; Stiven Puentes Rodriguez, B.; Issahaq, Mohammed N.; Udupa, Anirudh; Sugihara, Tatsuya; Trumble, Kevin P.; M'Saoubi, Rachid; Chandrasekar, Srinivasan
Machining-based deformation processing is used to produce metal foil and flat wire (strip) with suitable properties and quality for electrical power and renewable energy applications. In contrast to conventional multistage rolling, the strip is produced in a single-step and with much less process energy. Examples are presented from metal systems of varied workability, and strip product scale in terms of size and production rate. By utilizing the large-strain deformation intrinsic to cutting, bulk strip with ultrafine-grained microstructure, and crystallographic shear-texture favourable for formability, are achieved. Implications for production of commercial strip for electric motor applications and battery electrodes are discussed.
A method is presented to detect clear-sky periods for plane-of-array, time-averaged irradiance data that is based on the algorithm originally described by Reno and Hansen. We show this new method improves the state-of-the-art by providing accurate detection at longer data intervals, and by detecting clear periods in plane-of-array data, which is novel. We illustrate how accurate determination of clear-sky conditions helps to eliminate data noise and bias in the assessment of long-term performance of PV plants.
Spent nuclear fuel repository simulations are currently not able to incorporate detailed fuel matrix degradation (FMD) process models due to their computational cost, especially when large numbers of waste packages breach. The current paper uses machine learning to develop artificial neural network and k-nearest neighbor regression surrogate models that approximate the detailed FMD process model while being computationally much faster to evaluate. Using fuel cask temperature, dose rate, and the environmental concentrations of CO32−, O2, Fe2+, and H2 as inputs, these surrogates show good agreement with the FMD process model predictions of the UO2 degradation rate for conditions within the range of the training data. A demonstration in a full-scale shale repository reference case simulation shows that the incorporation of the surrogate models captures local and temporal environmental effects on fuel degradation rates while retaining good computational efficiency.
Criticality Control Overpack (CCO) containers are being considered for the disposal of defense-related nuclear waste at the Waste Isolation Pilot Plant (WIPP).