This document describes ROCIT, a neural-inspired object recognition algorithm based on a rank-order coding scheme that uses a light-weight neuron model. ROCIT coarsely simulates a subset of the human ventral visual stream from the retina through the inferior temporal cortex. It was designed to provide an extensible baseline from which to improve the fidelity of the ventral stream model and explore the engineering potential of rank order coding with respect to object recognition. This report describes the baseline algorithm, the model's neural network architecture, the theoretical basis for the approach, and reviews the history of similar implementations. Illustrative results are used to clarify algorithm details. A formal benchmark to the 1998 FERET fafc test shows above average performance, which is encouraging. The report concludes with a brief review of potential algorithmic extensions for obtaining scale and rotational invariance.
Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a Lockheed Martin Company, operates the laboratory for the Department of Energy's (DOE) National Nuclear Security Administration. The DOE Sandia Site Office oversees operations at the site, using Sandia Corporation as a management and operating contractor. This Site Environmental Report for 2003 was prepared in accordance with DOE Order 231.1A. The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2003. General site and environmental program information is also included.
Obfuscation protects software by making the code more difficult to understand. We review a collection of obfuscation techniques. We then consider what would constitute a theory of obfuscation. Several possibilities that could lead to such a theory are explored.
This document is intended to contain a detailed description of the mathematical formulation of Xyce, a massively parallel SPICE-style circuit simulator developed at Sandia National Laboratories. The target audience of this document are people in the role of 'service provider'. An example of such a person would be a linear solver expert who is spending a small fraction of his time developing solver algorithms for Xyce. Such a person probably is not an expert in circuit simulation, and would benefit from an description of the equations solved by Xyce. In this document, modified nodal analysis (MNA) is described in detail, with a number of examples. Issues that are unique to circuit simulation, such as voltage limiting, are also described in detail.
The objective is a significant advancement in the state-of-the-art of accelerometer design for tactical grade (or better) applications. The design goals are <1 milli-G bias stability across environments and $200 cost. This quantum leap in performance improvement and cost reduction can only be achieved by a radical new approach, not incremental improvements to existing concepts. This novel levitated closed-loop accelerometer is implemented as a hybrid micromachine. The hybrid approach frees the designer from the limitations of any given monolithic process and dramatically expands the available design space. The design can be tailored to the dynamic range, resolution, bandwidth, and environmental requirements of the application while still preserving all of the benefits of monolithic MEMS fabrication - extreme precision, small size, low cost, and low power. An accelerometer was designed and prototype hardware was built, driving the successful development and refinement of several 'never been done before' fabrication processes. Many of these process developments are commercially valuable and are key enablers for the realization of a wide variety of useful micro-devices. While controlled levitation of a proof mass has yet to be realized, the overall design concept remains sound. This was clearly demonstrated by the stable and reliable closed-loop control of a proof mass at the test structure level. Furthermore, the hybrid MEMS implementation is the most promising approach for achieving the ambitious cost and performance targets. It is strongly recommended that Sandia remain committed to the original goal.
This document is the final report for the Compressed Air Energy Storage Monitoring to Support Refrigerated-Mined Rock Cavern Technology (CAES Monitoring to Support RMRCT) (DE-FC26-01NT40868) project to have been conducted by CAES Development Co., along with Sandia National Laboratories. This document provides a final report covering tasks 1.0 and subtasks 2.1, 2.2, and 2.5 of task 2.0 of the Statement of Project Objectives and constitutes the final project deliverable. The proposed work was to have provided physical measurements and analyses of large-scale rock mass response to pressure cycling. The goal was to develop proof-of-concept data for a previously developed and DOE sponsored technology (RMRCT or Refrigerated-Mined Rock Cavern Technology). In the RMRCT concept, a room and pillar mine developed in rock serves as a pressure vessel. That vessel will need to contain pressure of about 1370 psi (and cycle down to 300 psi). The measurements gathered in this study would have provided a means to determine directly rock mass response during cyclic loading on the same scale, under similar pressure conditions. The CAES project has been delayed due to national economic unrest in the energy sector.
This SAND report is the final report on Sandia's Grand Challenge LDRD Project 27328, 'A Revolution in Lighting -- Building the Science and Technology Base for Ultra-Efficient Solid-state Lighting.' This project, which for brevity we refer to as the SSL GCLDRD, is considered one of Sandia's most successful GCLDRDs. As a result, this report reviews not only technical highlights, but also the genesis of the idea for Solid-state Lighting (SSL), the initiation of the SSL GCLDRD, and the goals, scope, success metrics, and evolution of the SSL GCLDRD over the course of its life. One way in which the SSL GCLDRD was different from other GCLDRDs was that it coincided with a larger effort by the SSL community - primarily industrial companies investing in SSL, but also universities, trade organizations, and other Department of Energy (DOE) national laboratories - to support a national initiative in SSL R&D. Sandia was a major player in publicizing the tremendous energy savings potential of SSL, and in helping to develop, unify and support community consensus for such an initiative. Hence, our activities in this area, discussed in Chapter 6, were substantial: white papers; SSL technology workshops and roadmaps; support for the Optoelectronics Industry Development Association (OIDA), DOE and Senator Bingaman's office; extensive public relations and media activities; and a worldwide SSL community website. Many science and technology advances and breakthroughs were also enabled under this GCLDRD, resulting in: 55 publications; 124 presentations; 10 book chapters and reports; 5 U.S. patent applications including 1 already issued; and 14 patent disclosures not yet applied for. Twenty-six invited talks were given, at prestigious venues such as the American Physical Society Meeting, the Materials Research Society Meeting, the AVS International Symposium, and the Electrochemical Society Meeting. This report contains a summary of these science and technology advances and breakthroughs, with Chapters 1-5 devoted to the five technical task areas: 1 Fundamental Materials Physics; 2 111-Nitride Growth Chemistry and Substrate Physics; 3 111-Nitride MOCVD Reactor Design and In-Situ Monitoring; 4 Advanced Light-Emitting Devices; and 5 Phosphors and Encapsulants. Chapter 7 (Appendix A) contains a listing of publications, presentations, and patents. Finally, the SSL GCLDRD resulted in numerous actual and pending follow-on programs for Sandia, including multiple grants from DOE and the Defense Advanced Research Projects Agency (DARPA), and Cooperative Research and Development Agreements (CRADAs) with SSL companies. Many of these follow-on programs arose out of contacts developed through our External Advisory Committee (EAC). In h s and other ways, the EAC played a very important role. Chapter 8 (Appendix B) contains the full (unedited) text of the EAC reviews that were held periodically during the course of the project.
Procedures to predict the reliability of electrical circuits are discussed. Three cases are introduced and discussed. In Case 1, an analyst predicts the probability of any failure in the intended relations between circuit inputs and circuit outputs. In Case 2, an analyst predicts the probability that specified unintended outputs would occur. In Case 3, an analyst considers coupling between circuits. Logic models are given for the three cases, and sources of failure probabilities of components are mentioned. Methods of analysis are given, software tools are mentioned, and recommendations for presentation and review of results are discussed.
This paper describes an 'Annex', or task, that is part of the International Energy Agency's Geothermal Implementing Agreement. Annex 7 is aimed at improving the state of the art in geothermal drilling, and has three subtasks: an international database on drilling cost and performance, a 'best practices' drilling handbook, and collaborative testing among participating countries. Drilling is an essential and expensive part of geothermal exploration, production, and maintenance. High temperature, corrosive fluids, and hard, fractured formations increase the cost of drilling, logging, and completing geothermal wells, compared to oil and gas. Cost reductions are critical because drilling and completing the production and injection well field can account for approximately half the capital cost for a geothermal power project. Geothermal drilling cost reduction can take many forms, e.g., faster drilling rates, increased bit or tool life, less trouble (twist-offs, stuck pipe, etc.), higher per-well production through multilaterals, and others. Annex 7 addresses all aspects of geothermal well construction, including developing a detailed understanding of worldwide geothermal drilling costs, understanding geothermal drilling practices and how they vary across the globe, and development of improved drilling technology. Objectives for Annex 7 include: (1) Quantitatively understand geothermal drilling costs and performance from around the world and identify ways to improve costs, performance, and productivity. (2) Identify and develop new and improved technologies for significantly reducing the cost of geothermal well construction. (3) Inform the international geothermal community about these drilling technologies. (4) Provide a vehicle for international cooperation, collaborative field tests, and data sharing toward the development and demonstration of improved geothermal drilling technology.
The Radiatively Driven Hypersonic Wind Tunnel (RDHWT) program requires an unprecedented 2-3 MeV electron beam energy source at an average beam power of approximately 200MW. This system injects energy downstream of a conventional supersonic air nozzle to minimize plenum temperature requirements for duplicating flight conditions above Mach 8 for long run-times. Direct-current electron accelerator technology is being developed to meet the objectives of a radiatively driven Mach 12 wind tunnel with a free stream dynamic pressure q=2000 psf. Due to the nature of research and industrial applications, there has never been a requirement for a single accelerator module with an output power exceeding approximately 500 kW. Although a 200MW module is a two-order of magnitude extrapolation from demonstrated power levels, the scaling of accelerator components to this level appears feasible. Accelerator system concepts are rapidly maturing and a clear technology development path has been established. Additionally, energy addition experiments have been conducted up to 800 kW into a supersonic airflow. This paper will discuss progress in the development of electron beam accelerator technology as an energy addition source for the RDHWT program and results of electron beam energy addition experiments conducted at Sandia National Laboratories.
The adsorption of myoglobin to Langmuir monolayers of a metal-chelating lipid in crystalline phase was studied using neutron and X-ray reflectivity (NR and XR) and grazing incidence X-ray diffraction (GIXD). In this system, adsorption is due to the interaction between chelated divalent copper or nickel ions and the histidine moieties at the outer surface of the protein. The binding interaction of histidine with the Ni-IDA complex is known to be much weaker than that with Cu-IDA. Adsorption was examined under conditions of constant surface area with an initial pressure of 40 mN/m. After {approx}12 h little further change in reflectivity was detected, although the surface pressure continued to slowly increase. For chelated Cu{sup 2+} ions, the adsorbed layer structure in the final state was examined for bulk myoglobin concentrations of 0.10 and 10 {micro}M. For the case of 10 {micro}M, the final layer thickness was 43 {angstrom}. This corresponds well to the two thicker dimensions of myoglobin in the native state (44 {angstrom} x 44 {angstrom} x 25 {angstrom}) and so is consistent with an end-on orientation for this disk-shaped protein at high packing density. However, the final average volume fraction of amino acid segments in the layer was 0.55, which is substantially greater than the value of 0.44 calculated for a completed monolayer from the crystal structure. This suggests an alternative interpretation based on denaturation. GIXD was used to follow the effect of protein binding on the crystalline packing of the lipids and to check for crystallinity within the layer of adsorbed myoglobin. Despite the strong adsorption of myoglobin, very little change was observed in the structure of the DSIDA film. There was no direct evidence in the XR or GIXD for peptide insertion into the lipid tail region. Also, no evidence for in-plane crystallinity within the adsorbed layer of myoglobin was observed. For 0.1 {micro}M bulk myoglobin concentration, the average segment volume fraction was only 0.13 and the layer thickness was {le}25 {angstrom}. Adsorption of myoglobin to DSIDA-loaded with Ni{sup 2+} was examined at bulk concentrations of 10 and 50 {micro}M. At 10 {micro}M myoglobin, the adsorbed amount was comparable to that obtained for adsorption to Cu{sup 2+}-loaded DSIDA monolayers at 0.1 {micro}M. But interestingly, the adsorbed layer thickness was 38 {angstrom}, substantially greater than that obtained at low coverage with Cu-IDA. This indicates that either there are different preferred orientations for isolated myoglobin molecules adsorbed to Cu-IDA and Ni-IDA monolayer films or else myoglobin denatures to a different extent in the two cases. Either interpretation can be explained by the very different binding energies for individual interactions in the two cases. At 50 {micro}M myoglobin, the thickness and segement volume fraction in the adsorbed layer for Ni-IDA were comparable to the values obtained with Cu-IDA at 10 {micro}M myoglobin.
The ability of future integrated metal-semiconductor micro-systems such as RF MEMS to perform highly complex functions will depend on developing freestanding metal structures that offer improved conductivity and reflectivity over polysilicon structures. For example, metal-based RF MEMS technology could replace the bulky RF system presently used in communications, navigation, and avionics systems. However, stress gradients that induce warpage of active components have prevented the implementation of this technology. Figure 1, is an interference micrograph image of a series of cantilever beams fabricated from electrodeposited Ni. The curvature in the beams was the result of stress gradients intrinsic to the electrodeposition process. To study the sources of the stress in electrodeposition of Ni we have incorporated a wafer curvature based stress sensor, the multibeam optical stress sensor, into an electrodeposition cell. We have determined that there are two regions of stress induced by electrodepositing Ni from a sulfamate-based bath (Fig 2). The stress evolution during the first region, 0-1000{angstrom}, was determined to be dependent only on the substrate material (Au vs. Cu), whereas the stress evolution during the second region, >1000{angstrom}, was highly dependent on the deposition conditions. In this region, the stress varied from +0.5 GPa to -0.5GPa, depending solely on the deposition rate. We examined four likely sources for the compressive intrinsic stress, i.e. reduction in tensile stress, and determined that only the adatom diffusion into grain boundaries model of Sheldon, et al. could account for the observed compressive stress. In the presentation, we shall discuss the compressive stress generation mechanisms considered and the ramifications of these results on fabrication of electrodeposited Ni for MEMS applications.
The critical time step needed for explicit time integration of laminated shell finite element models is presented. Each layer is restricted to be orthotropic when viewed from a properly oriented material coordinate system. Mindlin shell theory is used in determining the laminated response that includes the effects of transverse shear. The effects of the membrane-bending coupling matrix from the laminate material model are included. Such a coupling matrix arises even in the case of non-symmetric lay-ups of differing isotropic layers. Single point integration is assumed to be used in determining a uniform strain response from the element. Using a technique based upon one from the literature, reduced eigenvalue problems are established to determine the remaining non-zero frequencies. It is shown that the eigenvalue problem arising from the inplane normal and shear stresses is decoupled from that arising from the transverse shear stresses. A verification example is presented where the exact and approximate results are compared.