Publications

2 Results

Search results

Jump to search filters

Levitated micro-accelerometer

Peter, Frank J.

The objective is a significant advancement in the state-of-the-art of accelerometer design for tactical grade (or better) applications. The design goals are <1 milli-G bias stability across environments and $200 cost. This quantum leap in performance improvement and cost reduction can only be achieved by a radical new approach, not incremental improvements to existing concepts. This novel levitated closed-loop accelerometer is implemented as a hybrid micromachine. The hybrid approach frees the designer from the limitations of any given monolithic process and dramatically expands the available design space. The design can be tailored to the dynamic range, resolution, bandwidth, and environmental requirements of the application while still preserving all of the benefits of monolithic MEMS fabrication - extreme precision, small size, low cost, and low power. An accelerometer was designed and prototype hardware was built, driving the successful development and refinement of several 'never been done before' fabrication processes. Many of these process developments are commercially valuable and are key enablers for the realization of a wide variety of useful micro-devices. While controlled levitation of a proof mass has yet to be realized, the overall design concept remains sound. This was clearly demonstrated by the stable and reliable closed-loop control of a proof mass at the test structure level. Furthermore, the hybrid MEMS implementation is the most promising approach for achieving the ambitious cost and performance targets. It is strongly recommended that Sandia remain committed to the original goal.

More Details

Autonomous gas chromatograph system for Thermal Enhanced Vapor Extraction System (TEVES) proof of concept demonstration

Peter, Frank J.

An autonomous gas chromatograph system was designed and built to support the Thermal Enhanced Vapor Extraction System (TEVES) demonstration. TEVES is a remediation demonstration that seeks to enhance an existing technology (vacuum extraction) by adding a new technology (soil heating). A pilot scale unit was set up at one of the organic waste disposal pits at the Sandia National Laboratories Chemical Waste Landfill (CWL) in Tech Area 3. The responsibility for engineering a major part of the process instrumentation for TEVES belonged to the Manufacturing Control Subsystems Department. The primary mission of the one-of-a-kind hardware/software system is to perform on-site gas sampling and analysis to quantify a variety of volatile organic compounds (VOCs) from various sources during TEVES operations. The secondary mission is to monitor a variety of TEVES process physical parameters such as extraction manifold temperature, pressure, humidity, and flow rate, and various subsurface pressures. The system began operation in September 1994 and was still in use on follow-on projects when this report was published.

More Details
2 Results
2 Results