Machine-Learned Whitney Forms for Structure Preservation
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
This report summarizes the fiscal year 2023 (FY23) status of the second phase of a series of borehole heater tests in salt at the Waste Isolation Pilot Plant (WIPP) funded by the Disposal Research and Development (R&D) program of the Spent Fuel & Waste Science and Technology (SFWST) office at the US Department of Energy’s Office of Nuclear Energy’s (DOE-NE) Office in the Spent Fuel and Waste Disposition (SFWD) program.
Abstract not provided.
Abstract not provided.
Inverse Problems
Obtaining lightweight and accurate approximations of discretized objective functional Hessians in inverse problems governed by partial differential equations (PDEs) is essential to make both deterministic and Bayesian statistical large-scale inverse problems computationally tractable. The cubic computational complexity of dense linear algebraic tasks, such as Cholesky factorization, that provide a means to sample Gaussian distributions and determine solutions of Newton linear systems is a computational bottleneck at large-scale. These tasks can be reduced to log-linear complexity by utilizing hierarchical off-diagonal low-rank (HODLR) matrix approximations. In this work, we show that a class of Hessians that arise from inverse problems governed by PDEs are well approximated by the HODLR matrix format. In particular, we study inverse problems governed by PDEs that model the instantaneous viscous flow of ice sheets. In these problems, we seek a spatially distributed basal sliding parameter field such that the flow predicted by the ice sheet model is consistent with ice sheet surface velocity observations. We demonstrate the use of HODLR Hessian approximation to efficiently sample the Laplace approximation of the posterior distribution with covariance further approximated by HODLR matrix compression. Computational studies are performed which illustrate ice sheet problem regimes for which the Gauss-Newton data-misfit Hessian is more efficiently approximated by the HODLR matrix format than the low-rank (LR) format. We then demonstrate that HODLR approximations can be favorable, when compared to global LR approximations, for large-scale problems by studying the data-misfit Hessian associated with inverse problems governed by the first-order Stokes flow model on the Humboldt glacier and Greenland ice sheet.
Abstract not provided.
A robust data-management infrastructure is a key enabler for National Security Enterprise (NSE) capabilities in artificial intelligence and machine learning. This document describes efforts from a team of researchers at Sandia National Laboratories, Los Alamos National Laboratory, and Livermore National Laboratory to complete ASC Level II milestone #8854 “Assessment of Data-Management Infrastructure Needs for Production use of Advanced Machine learning and Artificial Intelligence.”
Physical Review Fluids
We report flow statistics and visualizations from molecular-gas-dynamics simulations using the direct simulation Monte Carlo (DSMC) method for turbulent Couette flow in a minimal domain where the lower wall is replaced by an idealized permeable fibrous substrate representative of thermal-protection-system materials for which the Knudsen number is O(10-1). Comparisons are made with smooth-wall DSMC simulations and smooth-wall direct numerical simulations (DNS) of the Navier-Stokes equations for the same conditions. Roughness, permeability, and noncontinuum effects are assessed. In the range of Reynolds numbers considered herein, the scalings of the skin friction on the permeable substrate and of the mean flow within the substrate suggest that they are dominated by viscous effects. While the regenerative cycle characteristic of smooth-wall turbulence remains intact for all cases considered, we observe that the near-wall velocity fluctuations are modulated by the permeable substrate with a wavelength equal to the pore spacing. Additionally, the flow within the substrate shows significant rarefaction effects, resulting in an apparent permeability that is 13% larger than the intrinsic permeability. In contrast, the smooth-wall DSMC and DNS simulations exhibit remarkably good agreement for the statistics examined, despite the Knudsen number based on the viscous length scale being as large as O(10-1). This latter result is at variance with classical estimates for the breakdown of the continuum assumption and calls for further investigations into the interaction of noncontinuum effects and turbulence.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Journal of Aerospace Information Systems
Motion primitives allow for application of discrete search algorithms to rapidly produce trajectories in complex continuous space. The maneuver automaton (MA) provides an elegant formulation for creating a primitive library based on trims and maneuvers. However, performance is fundamentally limited by the contents of the primitive library. If the library is too sparse, performance can be poor in terms of path cost, whereas a library that is too large can increase run time. This work outlines new methods for using genetic algorithms to prune a primitive library. The proposed methods balance the path cost and planning time while maintaining the reachability of the MA. The genetic algorithm in this paper evaluates and mutates populations of motion primitive libraries to optimize both objectives. Here, we illustrate the performance of these methods with a simulated study using a nonlinear medium-fidelity F-16 model. We optimize a library with the presented algorithm for obstacle-free navigation and a nap-of-the-Earth navigation task. In the obstacle-free navigation task, we show a tradeoff of a 10.16% higher planning cost for a 96.63% improvement in run time. In the nap-of-the-Earth task, we show a tradeoff of a 9.712% higher planning cost for a 92.06% improvement in run time.
Nanotechnology
Understanding and controlling nanoscale interface phenomena, such as band bending and secondary phase formation, is crucial for electronic device optimization. In granular metal (GM) studies, where metal nanoparticles are embedded in an insulating matrix, the importance of interface phenomena is frequently neglected. Here, we demonstrate that GMs can serve as an exemplar system for evaluating the role of secondary phases at interfaces through a combination of x-ray photoemission spectroscopy (XPS) and electrical transport studies. We investigated SiNx as an alternative to more commonly used oxide-insulators, as SiNx-based GMs may enable high temperature applications when paired with refractory metals. Comparing Co-SiNx and Mo-SiNx GMs, we found that, in the tunneling-dominated insulating regime, Mo-SiNx had reduced metal-silicide formation and orders-of-magnitude lower conductivity. XPS measurements indicate that metal-silicide and metal-nitride formation are mitigatable concerns in Mo-SiNx. Given the metal-oxide formation seen in other GMs, SiNx is an appealing alternative for metals that readily oxidize. Furthermore, SiNx provides a path to metal-nitride nanostructures, potentially useful for various applications in plasmonics, optics, and sensing.
Journal of Applied Physics
Recent work on atomic-precision dopant incorporation technologies has led to the creation of both boron and aluminum δ -doped layers in silicon with densities above the solid solubility limit. We use density functional theory to predict the band structure and effective mass values of such δ layers, first modeling them as ordered supercells. Structural relaxation is found to have a significant impact on the impurity band energies and effective masses of the boron layers, but not the aluminum layers. However, disorder in the δ layers is found to lead to a significant flattening of the bands in both cases. We calculate the local density of states and doping potential for these δ -doped layers, demonstrating that their influence is highly localized with spatial extents at most 4 nm. We conclude that acceptor δ -doped layers exhibit different electronic structure features dependent on both the dopant atom and spatial ordering. This suggests prospects for controlling the electronic properties of these layers if the local details of the incorporation chemistry can be fine-tuned.
Journal of Physics D: Applied Physics
While radiation is known to degrade AlGaN/GaN high-electron-mobility transistors (HEMTs), the question remains on the extent of damage governed by the presence of an electrical field in the device. In this study, we induced displacement damage in HEMTs in both ON and OFF states by irradiating with 2.8 MeV Au4+ ion to fluence levels ranging from 1.72 × 10 10 to 3.745 × 10 13 ions cm−2, or 0.001-2 displacement per atom (dpa). Electrical measurement is done in situ, and high-resolution transmission electron microscopy (HRTEM), energy dispersive x-ray (EDX), geometrical phase analysis (GPA), and micro-Raman are performed on the highest fluence of Au4+ irradiated devices. The selected heavy ion irradiation causes cascade damage in the passivation, AlGaN, and GaN layers and at all associated interfaces. After just 0.1 dpa, the current density in the ON-mode device deteriorates by two orders of magnitude, whereas the OFF-mode device totally ceases to operate. Moreover, six orders of magnitude increase in leakage current and loss of gate control over the 2-dimensional electron gas channel are observed. GPA and Raman analysis reveal strain relaxation after a 2 dpa damage level in devices. Significant defects and intermixing of atoms near AlGaN/GaN interfaces and GaN layer are found from HRTEM and EDX analyses, which can substantially alter device characteristics and result in complete failure.
npj Quantum Information
Experiments with trapped ions and neutral atoms typically employ optical modulators in order to control the phase, frequency, and amplitude of light directed to individual atoms. These elements are expensive, bulky, consume substantial power, and often rely on free-space I/O channels, all of which pose scaling challenges. To support many-ion systems like trapped-ion quantum computers or miniaturized deployable devices like clocks and sensors, these elements must ultimately be microfabricated, ideally monolithically with the trap to avoid losses associated with optical coupling between physically separate components. In this work we design, fabricate, and test an optical modulator capable of monolithic integration with a surface-electrode ion trap. These devices consist of piezo-optomechanical photonic integrated circuits configured as multi-stage Mach-Zehnder modulators that are used to control the intensity of light delivered to a single trapped ion on a separate chip. We use quantum tomography employing hundreds of multi-gate sequences to enhance the sensitivity of the fidelity to the types and magnitudes of gate errors relevant to quantum computing and better characterize the performance of the modulators, ultimately measuring single qubit gate fidelities that exceed 99.7%.
Additive Manufacturing
Material extrusion additive manufacturing (AM) has enabled an elegant fabrication pathway for a vast material library. Nonetheless, each material requires optimization of printing parameters generally determined through significant trial-and-error testing. To eliminate arduous, iteration-based optimization approaches, many researchers have used machine learning (ML) algorithms which provide opportunities for automated process optimization. In this work, we demonstrate the use of an ML-driven approach for real-time material extrusion print-parameter optimization through in-situ monitoring of printed line geometry. To do this, we use deep invertible neural networks (INNs) which can solve both forward and inverse, or optimization, problems using a single network. By combining in-situ computer vision and deep INNs, the printing parameters can be autonomously optimized to print a target line width in 1.2 s. Furthermore, defects that occur during printing can be rapidly identified and corrected autonomously. The methods developed and presented in this work eliminate user-intensive, time-consuming, and iterative parameter discovery approaches that currently limit accelerated implementation of extrusion-based AM processes. Furthermore, the presented approach can be generalized to provide real-time monitoring and optimization pathways for increasingly complex AM environments.