Publications

Results 51–100 of 201

Search results

Jump to search filters

Quality factor assessment of finite-size all-dielectric metasurfaces at the magnetic dipole resonance

Nanomaterials and Nanotechnology

Warne, Larry K.; Jorgenson, Roy E.; Campione, Salvatore

Recently there has been a large interest in achieving metasurface resonances with large quality factors. In this article, we examine metasurfaces that comprised a finite number of magnetic dipoles oriented parallel or orthogonal to the plane of the metasurface and determine analytic formulas for their resonances’ quality factors. These conditions are experimentally achievable in finite-size metasurfaces made of dielectric cubic resonators at the magnetic dipole resonance. Our results show that finite metasurfaces made of parallel (to the plane) magnetic dipoles exhibit low quality factor resonances with a quality factor that is independent of the number of resonators. More importantly, finite metasurfaces made of orthogonal (to the plane) magnetic dipoles lead to resonances with large quality factors, which ultimately depend on the number of resonators comprising the metasurface. In particular, by properly modulating the array of dipole moments by having a distribution of resonator polarizabilities, one can potentially increase the quality factor of metasurface resonances even further. These results provide design guidelines to achieve a sought quality factor applicable to any resonator geometry for the development of new devices such as photodetectors, modulators, and sensors.

More Details

Viscoelastic optical nonlocality of low-loss epsilon-near-zero nanofilms

Scientific Reports

Luk, Ting S.; De Ceglia, Domenico; Scalora, Michael; Vincenti, Maria A.; Campione, Salvatore; Kelley, Kyle; Maria, Jon P.; Keeler, Gordon A.

Optical nonlocalities are elusive and hardly observable in traditional plasmonic materials like noble and alkali metals. Here we report experimental observation of viscoelastic nonlocalities in the infrared optical response of epsilon-near-zero nanofilms made of low-loss doped cadmium-oxide. The nonlocality is detectable thanks to the low damping rate of conduction electrons and the virtual absence of interband transitions at infrared wavelengths. We describe the motion of conduction electrons using a hydrodynamic model for a viscoelastic fluid, and find excellent agreement with experimental results. The electrons' elasticity blue-shifts the infrared plasmonic resonance associated with the main epsilon-near-zero mode, and triggers the onset of higher-order resonances due to the excitation of electron-pressure modes above the bulk plasma frequency. We also provide evidence of the existence of nonlocal damping, i.e., viscosity, in the motion of optically-excited conduction electrons using a combination of spectroscopic ellipsometry data and predictions based on the viscoelastic hydrodynamic model.

More Details

Semiconductor Hyperbolic Metamaterials at the Quantum Limit

Scientific Reports

Montano, Ines; Campione, Salvatore; Klem, John F.; Foulk, James W.; Wolf, Omri; Sinclair, Michael B.; Luk, Ting S.

We study semiconductor hyperbolic metamaterials (SHMs) at the quantum limit experimentally using spectroscopic ellipsometry as well as theoretically using a new microscopic theory. The theory is a combination of microscopic density matrix approach for the material response and Green’s function approach for the propagating electric field. Our approach predicts absorptivity of the full multilayer system and for the first time allows the prediction of in-plane and out-of-plane dielectric functions for every individual layer constructing the SHM as well as effective dielectric functions that can be used to describe a homogenized SHM.

More Details

A metasurface optical modulator using voltage-controlled population of quantum well states

Applied Physics Letters

Sarma, Raktim S.; Campione, Salvatore; Goldflam, Michael; Shank, Joshua; Noh, Jinhyun; Le, Loan T.; Lange, Michael D.; Ye, Peide D.; Wendt, Joel R.; Ruiz, Isaac; Howell, Stephen W.; Sinclair, Michael B.; Wanke, Michael C.; Brener, Igal

The ability to control the light-matter interaction with an external stimulus is a very active area of research since it creates exciting new opportunities for designing optoelectronic devices. Recently, plasmonic metasurfaces have proven to be suitable candidates for achieving a strong light-matter interaction with various types of optical transitions, including intersubband transitions (ISTs) in semiconductor quantum wells (QWs). For voltage modulation of the light-matter interaction, plasmonic metasurfaces coupled to ISTs offer unique advantages since the parameters determining the strength of the interaction can be independently engineered. In this work, we report a proof-of-concept demonstration of a new approach to voltage-tune the coupling between ISTs in QWs and a plasmonic metasurface. In contrast to previous approaches, the IST strength is here modified via control of the electron populations in QWs located in the near field of the metasurface. By turning on and off the ISTs in the semiconductor QWs, we observe a modulation of the optical response of the IST coupled metasurface due to modulation of the coupled light-matter states. Because of the electrostatic design, our device exhibits an extremely low leakage current of ∼6 pA at a maximum operating bias of +1 V and therefore very low power dissipation. Our approach provides a new direction for designing voltage-tunable metasurface-based optical modulators.

More Details

Preliminary Survey on the Effectiveness of an Electromagnetic Dampener to Improve System Shielding Effectiveness

Campione, Salvatore; Reines, Isak C.; Warne, Larry K.; Williams, Jeffery T.; Gutierrez, Roy K.; Coats, Rebecca S.; Basilio, Lorena I.

This report explores the potential for reducing the fields and the quality factor within a system cavity by introducing microwave absorbing materials. Although the concept of introducing absorbing (lossy) materials within a cavity to drive the interior field levels down is well known, increasing the loading into a complex weapon cavity specifically for improved electromagnetic performance has not, in general, been considered, and this will be the subject of this work. We compare full-wave simulations to experimental results, demonstrating the applicability of the proposed method.

More Details

Improved quantitative circuit model of realistic patch-based nanoantenna-enabled detectors

Journal of the Optical Society of America B: Optical Physics

Campione, Salvatore; Warne, Larry K.; Goldflam, Michael; Peters, David; Sinclair, Michael B.

Improving the sensitivity of infrared detectors is an essential step for future applications, including satellite- and terrestrial-based systems. We investigate nanoantenna-enabled detectors (NEDs) in the infrared, where the nanoantenna arrays play a fundamental role in enhancing the level of absorption within the active material of a photodetector. The design and optimization of nanoantenna-enabled detectors via full-wave simulations is a challenging task given the large parameter space to be explored. Here, we present a fast and accurate fully analytic circuit model of patch-based NEDs. This model allows for the inclusion of real metals, realistic patch thicknesses, non-absorbing spacer layers, the active detector layer, and absorption due to higher-order evanescent modes of the metallic array. We apply the circuit model to the design of NED devices based on Type II superlattice absorbers, and show that we can achieve absorption of ∼70% of the incoming energy in subwavelength (∼λ∕5) absorber layers. The accuracy of the circuit model is verified against full-wave simulations, establishing this model as an efficient design tool to quickly and accurately optimize NED structures.

More Details

Compact epsilon-near-zero silicon photonic phase modulators

Optics Express

Reines, Isak C.; Wood, Michael G.; Luk, Ting S.; Serkland, Darwin K.; Campione, Salvatore

In this paper, we analyze a compact silicon photonic phase modulator at 1.55 μm using epsilon-near-zero transparent conducting oxide (TCO) films. The operating principle of the non-resonant phase modulator is field-effect carrier density modulation in a thin TCO film deposited on top of a passive silicon waveguide with a CMOS-compatible fabrication process. We compare phase modulator performance using both indium oxide (In2O3) and cadmium oxide (CdO) TCO materials. Our findings show that practical phase modulation can be achieved only when using high-mobility (i.e. low-loss) epsilon-near-zero materials such as CdO. The CdO-based phase modulator has a figure of merit of 17.1°/dB in a compact 5 μm length. This figure of merit can be increased further through the proper selection of high-mobility TCOs, opening a path for device miniaturization and increased phase shifts.

More Details

Low dissipation spectral filtering using a field-effect tunable III-V hybrid metasurface

Applied Physics Letters

Sarma, Raktim S.; Campione, Salvatore; Goldflam, Michael; Shank, Joshua; Noh, Jinhyun; Smith, Sean; Ye, Peide D.; Sinclair, Michael B.; Klem, John F.; Wendt, Joel R.; Ruiz, Isaac; Howell, Stephen W.; Brener, Igal

Considering the power constrained scaling of silicon complementary metal-oxide-semiconductor technology, the use of high mobility III-V compound semiconductors such as In0.53Ga0.47As in conjunction with high-κ dielectrics is becoming a promising option for future n-type metal-oxide-semiconductor field-effect-transistors. Development of low dissipation field-effect tunable III-V based photonic devices integrated with high-κ dielectrics is therefore very appealing from a technological perspective. In this work, we present an experimental realization of a monolithically integrable, field-effect-tunable, III-V hybrid metasurface operating at long-wave-infrared spectral bands. Our device relies on strong light-matter coupling between epsilon-near-zero (ENZ) modes of an ultra-thin In0.53Ga0.47As layer and the dipole resonances of a complementary plasmonic metasurface. The tuning mechanism of our device is based on field-effect modulation, where we modulate the coupling between the ENZ mode and the metasurface by modifying the carrier density in the ENZ layer using an external bias voltage. Modulating the bias voltage between ±2 V, we deplete and accumulate carriers in the ENZ layer, which result in spectrally tuning the eigenfrequency of the upper polariton branch at 13 μm by 480 nm and modulating the reflectance by 15%, all with leakage current densities less than 1 μA/cm2. Our wavelength scalable approach demonstrates the possibility of designing on-chip voltage-tunable filters compatible with III-V based focal plane arrays at mid- and long-wave-infrared wavelengths.

More Details

Formulas For Plane Wave Coupling To A Transmission Line Above Ground With Terminating Loads

Warne, Larry K.; Campione, Salvatore

This report considers plane wave coupling to a transmission line consisting of a wire above a conducting ground. Comparisons are made for the two types of available source models, along with a discussion about the decomposition of the line currents. Simple circuit models are constructed for the terminating impedances at the ends of the line including radiation effects. Results from the transmission line with these loads show good agreement with full wave simulations.

More Details

ATLOG Modeling of Buried Cables from the November 2016 HERMES Electromagnetic Pulse Experiments

Warne, Larry K.; Campione, Salvatore; Yee, Benjamin T.; Cartwright, Keith; Basilio, Lorena I.

This report compares ATLOG modeling results for the response of a finite-length dissipative buried conductor interacting with a conducting ground to a measurement taken November 2016 at the High-Energy Radiation Megavolt Electron Source (HERMES) facility. We use the ATLOG frequency-domain method based on transmission line theory. Estimates of the impedance per unit length and admittance per unit length for a cable laying in a PVC pipe embedded in a concrete block are reported. Current wave shapes from both a single conductor and composite differential mode and antenna mode arrangements are close to those observed in the experiments.

More Details

Multipole-Based Cable Braid Electromagnetic Penetration Model: Electric Penetration Case

IEEE Transactions on Electromagnetic Compatibility

Campione, Salvatore; Warne, Larry K.; Langston, William L.; Johnson, William A.; Coats, Rebecca S.; Basilio, Lorena I.

We investigate the electric penetration case of the first principles multipole-based cable braid electromagnetic penetration model reported in the Progress in Electromagnetics Research B 66, 63-89 (2016). We first analyze the case of a 1-D array of wires: this is a problem which is interesting on its own, and we report its modeling based on a multipole-conformal mapping expansion and extension by means of Laplace solutions in bipolar coordinates. We then compare the elastance (inverse of capacitance) results from our first principles cable braid electromagnetic penetration model to that obtained using the multipole-conformal mapping bipolar solution. These results are found in a good agreement up to a radius to half spacing ratio of 0.6, demonstrating a robustness needed for many commercial cables. We then analyze realistic cable implementations without dielectrics and compare the results from our first principles braid electromagnetic penetration model to the semiempirical results reported by Kley in the IEEE Transactions on Electromagnetic Compatibility 35, 1-9 (1993). Although we find results on the same order of magnitude of Kley's results, the full dependence on the actual cable geometry is accounted for only in our proposed multipole model which, in addition, enables us to treat perturbations from those commercial cables measured.

More Details

Gigahertz speed operation of epsilon-near-zero silicon photonic modulators

Optica

Wood, Michael G.; Campione, Salvatore; Parameswaran, S.; Luk, Ting S.; Wendt, Joel R.; Serkland, Darwin K.; Keeler, Gordon A.

Optical communication systems increasingly require electrooptical modulators that deliver high modulation speeds across a large optical bandwidth with a small device footprint and a CMOS-compatible fabrication process. Although silicon photonic modulators based on transparent conducting oxides (TCOs) have shown promise for delivering on these requirements, modulation speeds to date have been limited. Here, we describe the design, fabrication, and performance of a fast, compact electroabsorption modulator based on TCOs. The modulator works by using bias voltage to increase the carrier density in the conducting oxide, which changes the permittivity and hence optical attenuation by almost 10 dB. Under bias, light is tightly confined to the conducting oxide layer through nonresonant epsilon-near-zero (ENZ) effects, which enable modulation over a broad range of wavelengths in the telecommunications band. Our approach features simple integration with passive silicon waveguides, the use of stable inorganic materials, and the ability to modulate both transverse electric and magnetic polarizations with the same device design. Using a 4-μm-long modulator and a drive voltage of 2 Vpp, we demonstrate digital modulation at rates of 2.5 Gb/s. We report broadband operation with a 6.5 dB extinction ratio across the 1530–1590 nm band and a 10 dB insertion loss. This work verifies that high-speed ENZ devices can be created using conducting oxide materials and paves the way for additional technology development that could have a broad impact on future optical communications systems.

More Details

Vertically oriented metamaterial broadband linear polariser

Electronics Letters

Campione, Salvatore; Burckel, David B.

Control and manipulation of polarization is an important topic for imaging and light matter interactions. In the infrared regime, the large wavelengths make wire grid polarizers a viable option, as it is possible to create periodic arrays of metallic wires at that scale. The recent advent of metamaterials has spurred an increase in non-traditional polarizer motifs centred around more complicated repeat units, which potentially provide more functionality. In this paper we explore the use of two-dimensional (2D) arrays of single and back-to-back vertically oriented cross dipoles arranged in a cubic in-plane silicon matrix. Here, we show that both single and back-to-back versions have higher rejection ratios and larger bandwidths than either wire grid polarizers or 2D arrays of linear dipoles.

More Details

First principles model of electric cable braid penetration with dielectrics

Progress In Electromagnetics Research C

Campione, Salvatore; Warne, Larry K.; Langston, William L.; Basilio, Lorena I.

In this paper, we report the formulation to account for dielectrics in a first principles multipole-based cable braid electromagnetic penetration model. To validate our first principles model, we consider a one-dimensional array of wires, which can be modeled analytically with a multipole-conformal mapping expansion for the wire charges; however, the first principles model can be readily applied to realistic cable geometries. We compare the elastance (i.e., the inverse of the capacitance) results from the first principles cable braid electromagnetic penetration model to those obtained using the analytical model. The results are found in good agreement up to a radius to half spacing ratio of 0.5–0.6, depending on the permittivity of the dielectric used, within the characteristics of many commercial cables. We observe that for typical relative permittivities encountered in braided cables, the transfer elastance values are essentially the same as those of free space; the self-elastance values are also approximated by the free space solution as long as the dielectric discontinuity is taken into account for the planar mode.

More Details

Parametric Analysis of Vertically Oriented Metamaterials for Wideband Omnidirectional Perfect Absorption

2018 IEEE Antennas and Propagation Society International Symposium and USNC/URSI National Radio Science Meeting, APSURSI 2018 - Proceedings

Pung, Aaron J.; Goldflam, Michael; Burckel, David B.; Brener, Igal; Sinclair, Michael B.; Campione, Salvatore

Metamaterials provide a means to tailor the spectral response of a surface. Given the periodic nature of the metamaterial, proper design of the unit cell requires intimate knowledge of the parameter space for each design variable. We present a detailed study of the parameter space surrounding vertical split-ring resonators and planar split-ring resonators, and demonstrate widening of the perfect absorption bandwidth based on the understanding of its parameter space.

More Details

Multipolar second harmonic generation in a symmetric nonlinear metamaterial

Scientific Reports

Wolf, Omri; Campione, Salvatore; Yang, Yuanmu; Brener, Igal

Optical nonlinearities are intimately related to the spatial symmetry of the nonlinear media. For example, the second order susceptibility vanishes for centrosymmetric materials under the dipole approximation. The latter concept has been naturally extended to the metamaterials' realm, sometimes leading to the (erroneous) hypothesis that second harmonic (SH) generation is negligible in highly symmetric meta-atoms. In this work we aim to show that such symmetric meta-atoms can radiate SH light efficiently. In particular, we investigate in-plane centrosymmetric meta-atom designs where the approximation for meta-atoms breaks down. In a periodic array this building block allows us to control the directionality of the SH radiation. We conclude by showing that the use of symmetry considerations alone allows for the manipulation of the nonlinear multipolar response of a meta-atom, resulting in e.g. dipolar, quadrupolar, or multipolar emission on demand. This is because the size of the meta-atom is comparable with the free-space wavelength, thus invalidating the dipolar approximation for meta-atoms.

More Details

A first principles, multipole-based cable braid electromagnetic penetration model

2017 32nd General Assembly and Scientific Symposium of the International Union of Radio Science, URSI GASS 2017

Campione, Salvatore; Warne, Larry K.; Langston, William L.; Johnson, William A.; Coats, Rebecca S.; Basilio, Lorena I.

We report in this paper a first principles, multipole-based cable braid electromagnetic penetration model. We apply this formulation to the case of a one-dimensional array of wires, which can be modeled analytically via a multipole-conformal mapping expansion for the wire charges and extension by means of Laplace solutions in bipolar coordinates. We analyze both electric and magnetic penetrations and compare results from the first principles cable braid electromagnetic penetration model to those obtained using the multipole-conformal mapping expansion method. We find results in very good agreement when using up to the octopole moment (for the first principles model), covering a dynamic range of radius-to-half-spacing ratio up to 0.6. These results give us the confidence that our first principles model works within the geometric characteristics of many commercial cables.

More Details

Realistic full wave modeling of focal plane array pixels

Applied Computational Electromagnetics Society Journal

Campione, Salvatore; Warne, Larry K.; Jorgenson, Roy E.; Davids, Paul; Peters, David

In this paper we investigate full-wave simulations of realistic implementations of multifunctional nanoantenna enabled detectors (NEDs). We focus on a 2x2 pixelated array structure that supports two wavelengths of operation. We design each resonating structure independently using full-wave simulations with periodic boundary conditions mimicking the whole infinite array. We then construct a supercell made of a 2x2 pixelated array with periodic boundary conditions mimicking the full NED; in this case, however, each pixel comprises 10-20 antennas per side. In this way, the cross-talk between contiguous pixels is accounted for in our simulations. We observe that, even though there are finite extent effects, the pixels work as designed, each responding at the respective wavelength of operation. This allows us to stress that realistic simulations of multifunctional NEDs need to be performed to verify the design functionality by taking into account finite extent and cross-talk effects.

More Details

Nanoantenna-enhanced absorption in thin infrared detector layers

Proceedings of the 2017 19th International Conference on Electromagnetics in Advanced Applications, ICEAA 2017

Sinclair, Michael B.; Warne, Larry K.; Campione, Salvatore; Goldflam, Michael; Peters, David

The noise performance of infrared detectors can be improved through utilization of thinner detector layers which reduces thermal and generation-recombination noise currents. However, some infrared detector materials suffer from weak optical absorption and thinning the detector layer can lead to incomplete absorption of the incoming infrared photons which reduces detector quantum efficiency. Here, we show how subwavelength metallic nanoantennas can be used to boost the efficiency of photon absorption for thin detector layers, thereby achieving overall enhanced detector performance.

More Details

Accelerated Time-Domain Modeling of Electromagnetic Pulse Excitation of Finite-Length Dissipative Conductors over a Ground Plane via Function Fitting and Recursive Convolution

Campione, Salvatore; Warne, Larry K.; Sainath, Kamalesh; Basilio, Lorena I.

In this report we overview the fundamental concepts for a pair of techniques which together greatly hasten computational predictions of electromagnetic pulse (EMP) excitation of finite-length dissipative conductors over a ground plane. In a time- domain, transmission line (TL) model implementation, predictions are computationally bottlenecked time-wise, either for late-time predictions (about 100ns-10000ns range) or predictions concerning EMP excitation of long TLs (order of kilometers or more ). This is because the method requires a temporal convolution to account for the losses in the ground. Addressing this to facilitate practical simulation of EMP excitation of TLs, we first apply a technique to extract an (approximate) complex exponential function basis-fit to the ground/Earth's impedance function, followed by incorporating this into a recursion-based convolution acceleration technique. Because the recursion-based method only requires the evaluation of the most recent voltage history data (versus the entire history in a "brute-force" convolution evaluation), we achieve necessary time speed- ups across a variety of TL/Earth geometry/material scenarios. Intentionally Left Blank

More Details

Dipole Approximation to Predict the Resonances of Dimers Composed of Dielectric Resonators for Directional Emission: Dielectric Dimers Dipole Approximation

Radio Science

Campione, Salvatore; Warne, Larry K.; Basilio, Lorena I.

In this paper we develop a fully-retarded, dipole approximation model to estimate the effective polarizabilities of a dimer made of dielectric resonators. They are computed from the polarizabilities of the two resonators composing the dimer. We analyze the situation of full-cubes as well as split-cubes, which have been shown to exhibit overlapping electric and magnetic resonances. We compare the effective dimer polarizabilities to ones retrieved via full-wave simulations as well as ones computed via a quasi-static, dipole approximation. We observe good agreement between the fully-retarded solution and the full-wave results, whereas the quasi-static approximation is less accurate for the problem at hand. The developed model can be used to predict the electric and magnetic resonances of a dimer under parallel or orthogonal (to the dimer axis) excitation. This is particularly helpful when interested in locating frequencies at which the dimer will emit directional radiation.

More Details

Femtosecond switching of infrared light using a plasmonic cadmium oxide perfect absorber

International Conference on Optical MEMS and Nanophotonics

Yang, Yuanmu; Kelly, Kyle; Sachet, Edward; Campione, Salvatore; Luk, Ting S.; Maria, Jon P.; Sinclair, Michael B.; Brener, Igal

Using a high-electron-mobility cadmium oxide perfect absorber and intraband optical pumping, we experimentally demonstrate a reflective polarizer with a polarization extinction ratio of 91 that can be switched on and off within 800 fs.

More Details
Results 51–100 of 201
Results 51–100 of 201