For high voltage electrical devices, prevention of high voltage breakdown is critical for device function. Use of polymeric encapsulation such as epoxies is common, but these may include air bubbles or other voids of varying size. The present work aimed to model and experimentally determine the size dependence of breakdown voltage for voids in an epoxy matrix, as a step toward establishing size criteria for void screening. Effects were investigated experimentally for both one-dimensional metal/epoxy/air/epoxy/metal gap sizes from 50 μm to 10 mm, as well as spherical voids of 250 μm, 500 μm, 1 mm and 2 mm sizes. These experimental results were compared to modified Paschen curve and particle-in-cell discharge models; minimum breakdown voltages of 6 - 8.5 kV appeared to be predicted by 1D models and experiments, with minimum breakdown voltage for void sizes of 0.2 - 1 mm. In a limited set of 3D experiments on 250 μm, 500 μm, 1 mm and 2 mm voids within epoxy, the minimum breakdown voltages observed were 18.5 - 20 kV, for 500 μm void sizes. These experiments and models are aimed at providing initial size and voltage criteria for tolerable void sizes and expected discharge voltages to support design of encapsulated high voltage components.
This study evaluated gamma irradiation for sterilization and reuse of two models of N95 respirators after gamma radiation sterilization as a method to increase availability of N95 respirators during a shortage. The Sandia National Laboratories Gamma Irradiation Facility was used to irradiate two different models of N95 filtering facepiece respirators at doses ranging from 0 kGy(tissue) to 50 kGy(tissue). The following tests were used to determine the efficacy of the respirator after irradiation sterilization: Ambient Aerosol Condensation Nuclei Counter Quantitative Fit Test, tensile test, strain cycling, oscillatory dynamic mechanical analysis, microscopic image analysis of fiber layers, and electrostatic field measurements. Both of the respirator models exhibited statistically significant changes after gamma irradiation as shown by the Quantitative Fit Test, electrostatic testing and the aerosol testing. The change in electrostatic capability of the filter reduced the efficiency of challenging particles near the 200 nm size by approximately 40-50%. Both tested respirators showed statistically significant changes associated with gamma sterilization. However, our results indicate that choices in materials and manufacturing methods to achieve N95 filtration lead to different magnitudes of damage when exposed to gamma radiation at sterilization relevant doses. This damage results in lower filtration performance. While our sample size (2 different types of respirators) was small, we did observe a change in electrostatic properties on a filter layer that coincided with the failure on the Quantitative Fit Test.
This study evaluated gamma irradiation for sterilization and reuse of two models of N95 respirators after gamma radiation sterilization as a method to increase availability of N95 respirators during a shortage. The Sandia National Laboratories Gamma Irradiation Facility was used to irradiate two different models of N95 filtering facepiece respirators at doses ranging from 0 kGy(tissue) to 50 kGy(tissue). The following tests were used to determine the efficacy of the respirator after irradiation sterilization: Ambient Aerosol Condensation Nuclei Counter Quantitative Fit Test, tensile test, strain cycling, oscillatory dynamic mechanical analysis, microscopic image analysis of fiber layers, and electrostatic field measurements. Both of the respirator models exhibited statistically significant changes after gamma irradiation as shown by the Quantitative Fit Test, electrostatic testing and the aerosol testing. The change in electrostatic charge of the filter was correlated with a reduction in capturing particles near the 200 nm size by approximately 40-50%. Both tested respirators showed statistically significant changes associated with gamma sterilization. However, our results indicate that choices in materials and manufacturing methods to achieve N95 filtration lead to different magnitudes of damage when exposed to gamma radiation at sterilization relevant doses. This damage results in lower filtration performance. While our sample size (2 different types of respirators) was small, we did observe a change in electrostatic properties on a filter layer that coincided with the failure on the Quantitative Fit Test and reduction in aerosol filtering efficiency. Key Words: N95 respirators, respirators, airborne transmission, pandemic prevention, COVID-19, gamma sterilization
Interfacial toughness quantifies resistance to crack growth along an interface and in this investigation the toughness of an aluminum/epoxy interface was measured as a function of surface roughness and test temperature. The large strain response of the relatively ductile epoxy adhesive used in this study was also characterized. This epoxy adhesive exhibits intrinsic strain-softening after initial compressive yield and then deforms plastically at a roughly constant flow stress until it rapidly hardens at large compressive strains. Here, we find that interface toughness scales as the product of the temperature dependent epoxy yield strength and a length scale that characterizes surface roughness. The proposed scaling is based upon dimensional considerations of a model problem that assumes that the characteristic length scale of both the roughness and the crack-tip yield zone is small relative to the region dominated by the linear elastic asymptotic crack-tip stress field. Furthermore, the model assumes that interfacial failure occurs only after the epoxy begins to harden at large strains. The proposed relationship is validated by our interfacial toughness measurements.
This report describes an adhesively bonded, Asymmetric Double Cantilever Beam (ADCB) fracture specimen that has been expressly developed to measure the toughness of an alumina (Al203)/epoxy interface. The measured interfacial fracture toughness quantifies resistance to crack growth along an interface with the stipulation that crack-tip yielding is limited and localized to the crack-tip. An ADCB specimen is a variant of the well-known double cantilever beam specimen, but in the ADCB specimen the two beams have different bending stiffnesses. This report begins with a brief overview of how crack-tip mode mixity (i.e., a measure of shear-to- normal stress at the crack-tip) is a distinguishing feature of interfacial fracture. Which is then followed by a detailed description of relevant design, fabrication, testing, and associated data analysis techniques. The report then concludes by presenting illustrative results that compare the measured interfacial toughness of an alumina/epoxy interface when the alumina is silane-coated and when the alumina is not silane coated. This page left blank
This report describes the 2015-2017 fiscal year research efforts to evaluate high temperature plastics as replacement materials for ceramics in electrical contact assemblies. The main objective of this work was to assess the feasibility of replacing existing high-price ceramic inserts with a polymeric material. Current ceramic parts are expensive due to machining costs and can suffer brittle failure. Therefore, replacing the ceramic with a more cost-effective material — in this case a plastic — is highly desirable. Not only are plastics easier to process, but they can also eliminate final tooling and are less brittle than ceramics. This effort used a three-phase approach: selection of appropriate materials determined by a comprehensive literature review, performance of an initial thermal stability screening, understanding of aging behavior under normal and off-normal conditions, and evaluation of performance at elevated temperatures. Two polymers were determined to meet the desired criteria: polybenzimidazole, and Vespel® SP-1 polyimide. Polymer derived ceramics may also be useful but will require further development of molding capabilities that were beyond the scope of this program.
Sealing glasses are ubiquitous in high pressure and temperature engineering applications, such as hermetic feed-through electrical connectors. A common connector technology are glass-to-metal seals where a metal shell compresses a sealing glass to create a hermetic seal. Though finite-element analysis has been used to understand and design glass-to-metal seals for many years, there has been little validation of these models. An indentation technique was employed to measure the residual stress on the surface of a simple glass-to-metal seal. Recently developed rate- dependent material models of both Schott 8061 and 304L VAR stainless steel have been applied to a finite-element model of the simple glass-to-metal seal. Model predictions of residual stress based on the evolution of material models are shown. These model predictions are compared to measured data. Validity of the finite- element predictions is discussed. It will be shown that the finite-element model of the glass-to-metal seal accurately predicts the mean residual stress in the glass near the glass-to-metal interface and is valid for this quantity of interest.
Glass-ceramic seals may be the future of hermetic connectors at Sandia National Laboratories. They have been shown capable of surviving higher temperatures and pressures than amorphous glass seals. More advanced finite-element material models are required to enable model-based design and provide evidence that the hermetic connectors can meet design requirements. Glass-ceramics are composite materials with both crystalline and amorphous phases. The latter gives rise to (non-linearly) viscoelastic behavior. Given their complex microstructures, glass-ceramics may be thermorheologically complex, a behavior outside the scope of currently implemented constitutive models at Sandia. However, it was desired to assess if the Simplified Potential Energy Clock (SPEC) model is capable of capturing the material response. Available data for SL 16.8 glass-ceramic was used to calibrate the SPEC model. Model accuracy was assessed by comparing model predictions with shear moduli temperature dependence and high temperature 3-point bend creep data. It is shown that the model can predict the temperature dependence of the shear moduli and 3- point bend creep data. Analysis of the results is presented. Suggestions for future experiments and model development are presented. Though further calibration is likely necessary, SPEC has been shown capable of modeling glass-ceramic behavior in the glass transition region but requires further analysis below the transition region.
Develop an understanding of the evolution of glassy polymer mechanical response during aging and the mechanisms associated with that evolution. That understanding will be used to develop constitutive models to assess the impact of stress evolution in encapsulants on NW designs.
Predicting the residual stress which develops during fabrication of a glass-to-metal compression seal requires material models that can accurately predict the effects of processing on the sealing glass. Validation of the predictions requires measurements on representative test geometries to accurately capture the interaction between the seal materials during a processing cycle required to form the seal, which consists of a temperature excursion through the glass transition temperature of the sealing glass. To this end, a concentric seal test geometry, referred to as a short cylinder seal, consisting of a stainless steel shell enveloping a commercial sealing glass disk has been designed, fabricated, and characterized as a model validation test geometry. To obtain data to test/validate finite element (FE) stress model predictions of this geometry, spatially-resolved residual stress was calculated from the measured lengths of the cracks emanating from radially positioned Vickers indents in the glass disk portion of the seal. The indentation crack length method is described, and the spatially-resolved residual stress determined experimentally are compared to FE stress predictions made using a nonlinear viscoelastic material model adapted to inorganic sealing glasses and an updated rate dependent material model for 304L stainless steel. The measurement method is a first to achieve a degree of success for measuring spatially resolved residual stress in a glass-bearing geometry and a favorable comparison between measurements and simulation was observed.
Physical stress relaxation in rubbery, thermoset polymers is limited by cross-links, which impede segmental motion and restrict relaxation to network defects, such as chain ends. In parallel, the cure shrinkage associated with thermoset polymerizations leads to the development of internal residual stress that cannot be effectively relaxed. Recent strategies have reduced or eliminated such cure stress in thermoset polymers largely by exploiting chemical relaxation processes, wherein temporary cross-links or otherwise transient bonds are incorporated into the polymer network. Here, we explore an alternative approach, wherein physical relaxation is enhanced by the incorporation of organometallic sandwich moieties into the backbone of the polymer network. A standard epoxy resin is cured with a diamine derivative of ferrocene and compared to conventional diamine curing agents. The ferrocene-based thermoset is clearly distinguished from the conventional materials by reduced cure stress with increasing cure temperature as well as unique stress relaxation behavior above its glass transition in the fully cured state. The relaxation experiments exhibit features characteristic of a physical relaxation process. Furthermore, the cure stress is observed to vanish precipitously upon deliberate introduction of network defects through an increasing imbalance of epoxy and amine functional groups. We postulate that these beneficial properties arise from fluxional motion of the cyclopentadienyl ligands on the polymer backbone.