Publications

3 Results

Search results

Jump to search filters

Modeling efficient and equitable distribution of COVID-19 vaccines

Makvandi, Monear M.; Wallis, Laurie D.; West, Celine N.; Thelen, Haedi E.; Vanwinkle, Zane; Halkjaer-Knudsen, Vibeke N.; Laros, James H.; Beyeler, Walter E.; Klise, Katherine A.; Finley, Patrick D.

Producing and distributing COVID-19 vaccine during the pandemic is a major logistical challenge requiring careful planning and efficient execution. This report presents information on logistical, policy and technical issues relevant to rapidly fielding a COVID-19 vaccination program. For this study we (a) conducted literature review and subject matter expert elicitation to understand current vaccine manufacturing and distribution capabilities and vaccine allocation strategies, (b) designed a baseline vaccine distribution strategy and modeling strategy to provide insight into the potential for targeted distribution of limited initial vaccine supplies, and (c) developed parametric interfaces to enable vaccine distribution scenarios to be analyzed in depth with Sandias Adaptive Recovery Model that will allow us evaluate the additional sub- populations and alternative distribution scenarios from a public health benefit and associated economic disruption Principal issues, challenges, and complexities that complicate COVID-19 vaccine delivery identified in our literature and subject matter expert investigation include these items: The United States has not mounted an urgent nationwide vaccination campaign in recent history. The existing global manufacturing and distribution infrastructure are not able to produce enough vaccine for the population immediately. Vaccines, once available will be scarce resources. Prioritization for vaccine allocation will be built on existing distribution networks. Vaccine distribution may not have a universal impact on disease transmission and morbidity because of scarcity, priority population demographics, and underlying disease transmission rates. Considerations for designing a vaccine distribution strategy are discussed. A baseline distribution strategy is designed and tested using the Adaptive Recovery Model, which couples a deterministic compartmental epidemiological model and a stochastic network model. We show the impact of this vaccine distribution strategy on hospitalizations, mortality, and contact tracing requirements. This model can be used to quantitatively evaluate alternative distribution scenarios, guiding policy decisions as vaccine candidates are narrowed down.

More Details

Sterilization of N95 Respirators via Gamma Radiation: Comparison of Post-sterilization Efficacy

Thelen, Haedi E.; Grillet, Anne M.; Nemer, Martin N.; Olszewska-Wasiolek, Maryla A.; Hanson, Donald J.; Stavig, Mark E.; Omana, Michael A.; Martinez-Sanchez, Andres M.; Vehar, David W.

This study evaluated gamma irradiation for sterilization and reuse of two models of N95 respirators after gamma radiation sterilization as a method to increase availability of N95 respirators during a shortage. The Sandia National Laboratories Gamma Irradiation Facility was used to irradiate two different models of N95 filtering facepiece respirators at doses ranging from 0 kGy(tissue) to 50 kGy(tissue). The following tests were used to determine the efficacy of the respirator after irradiation sterilization: Ambient Aerosol Condensation Nuclei Counter Quantitative Fit Test, tensile test, strain cycling, oscillatory dynamic mechanical analysis, microscopic image analysis of fiber layers, and electrostatic field measurements. Both of the respirator models exhibited statistically significant changes after gamma irradiation as shown by the Quantitative Fit Test, electrostatic testing and the aerosol testing. The change in electrostatic capability of the filter reduced the efficiency of challenging particles near the 200 nm size by approximately 40-50%. Both tested respirators showed statistically significant changes associated with gamma sterilization. However, our results indicate that choices in materials and manufacturing methods to achieve N95 filtration lead to different magnitudes of damage when exposed to gamma radiation at sterilization relevant doses. This damage results in lower filtration performance. While our sample size (2 different types of respirators) was small, we did observe a change in electrostatic properties on a filter layer that coincided with the failure on the Quantitative Fit Test.

More Details

Sterilization of N95 Respirators via Gamma Radiation: Comparison of Post-sterilization Efficacy

Thelen, Haedi E.; Grillet, Anne M.; Nemer, Martin N.; Olszewska-Wasiolek, Maryla A.; Hanson, Donald J.; Stavig, Mark E.; Omana, Michael A.; Martinez-Sanchez, Andres M.; Vehar, David W.

This study evaluated gamma irradiation for sterilization and reuse of two models of N95 respirators after gamma radiation sterilization as a method to increase availability of N95 respirators during a shortage. The Sandia National Laboratories Gamma Irradiation Facility was used to irradiate two different models of N95 filtering facepiece respirators at doses ranging from 0 kGy(tissue) to 50 kGy(tissue). The following tests were used to determine the efficacy of the respirator after irradiation sterilization: Ambient Aerosol Condensation Nuclei Counter Quantitative Fit Test, tensile test, strain cycling, oscillatory dynamic mechanical analysis, microscopic image analysis of fiber layers, and electrostatic field measurements. Both of the respirator models exhibited statistically significant changes after gamma irradiation as shown by the Quantitative Fit Test, electrostatic testing and the aerosol testing. The change in electrostatic charge of the filter was correlated with a reduction in capturing particles near the 200 nm size by approximately 40-50%. Both tested respirators showed statistically significant changes associated with gamma sterilization. However, our results indicate that choices in materials and manufacturing methods to achieve N95 filtration lead to different magnitudes of damage when exposed to gamma radiation at sterilization relevant doses. This damage results in lower filtration performance. While our sample size (2 different types of respirators) was small, we did observe a change in electrostatic properties on a filter layer that coincided with the failure on the Quantitative Fit Test and reduction in aerosol filtering efficiency. Key Words: N95 respirators, respirators, airborne transmission, pandemic prevention, COVID-19, gamma sterilization

More Details
3 Results
3 Results