Publications

Results 1–25 of 34

Search results

Jump to search filters

ExaWind: Then and now

Crozier, Paul C.; Berger-Vergiat, Luc B.; Dement, David C.; deVelder, Nathaniel d.; Hu, Jonathan J.; Knaus, Robert C.; Lee, Dong H.; Matula, Neil M.; Overfelt, James R.; Sakievich, Philip S.; Smith, Timothy A.; Williams, Alan B.; Prokopenko, Andrey; Moser, Robert; Melvin, Jeremy; Sprague, Michael; Bidadi, Shreyas; Brazell, Michael; Brunhart-Lupo, Nicholas; Henry De Frahan, Marc; Rood, Jon; Sharma, Ashesh; Topcuoglu, Ilker; Vijayakumar, Ganesh

Abstract not provided.

ExaWind: Exascale Predictive Wind Plant Flow Physics Modeling

Sprague, Michael A.; Brazell, Michael; Brunhart-Lupo, Nicholas; Mullowney, Paul; Rood, Jon; Sharma, Ashesh; Thomas, Stephen; Vijayakumar, Ganesh; Crozier, Paul C.; Berger-Vergiat, Luc B.; Cheung, Lawrence C.; deVelder, Nathaniel d.; Hu, Jonathan J.; Knaus, Robert C.; Lee, Dong H.; Matula, Neil M.; Overfelt, James R.; Sakievich, Philip S.; Smith, Timothy A.; Williams, Alan B.; Yamazaki, Ichitaro Y.; Turner, John A.; Prokopenko, Andrey; Wilson, Robert; Moser, Robert; Melvin, Jeremy

Abstract not provided.

ExaWind: Exascale Predictive Wind Plant Flow Physics Modeling

Sprague, Michael; Ananthan, Shreyas; Binyahib, Roba; Brazell, Michael; De Frahan, Marc H.; King, Ryan A.; Mullowney, Paul; Rood, Jon; Sharma, Ashesh; Thomas, Stephen A.; Vijayakumar, Ganesh; Crozier, Paul C.; Berger-Vergiat, Luc B.; Cheung, Lawrence C.; Dement, David C.; deVelder, Nathaniel d.; Glaze, D.J.; Hu, Jonathan J.; Knaus, Robert C.; Lee, Dong H.; Matula, Neil M.; Okusanya, Tolulope O.; Overfelt, James R.; Rajamanickam, Sivasankaran R.; Sakievich, Philip S.; Smith, Timothy A.; Vo, Johnathan V.; Williams, Alan B.; Yamazaki, Ichitaro Y.; Turner, William J.; Prokopenko, Andrey; Wilson, Robert V.; Moser, Robert; Melvin, Jeremy; Sitaraman, Jay

Abstract not provided.

Demonstration and performance testing of extreme-resolution simulations with static meshes on Summit (CPU & GPU) for a parked-turbine configuration and an actuator-line (mid-fidelity model) wind farm configuration (ECP-Q4 FY2020 Milestone Report)

Anathan, Sheryas; Williams, Alan B.; Overfelt, James R.; Vo, Johnathan V.; Sakievich, Philip S.; Smith, Timothy A.; Hu, Jonathan J.; Berger-Vergiat, Luc B.; Mullowney, Paul; Thomas, Stephen; Henry De Frahan, Marc; Melvin, Jeremy; Moser, Robert; Brazell, Michael; Sprague, Michael A.

The goal of the ExaWind project is to enable predictive simulations of wind farms comprised of many megawatt-scale turbines situated in complex terrain. Predictive simulations will require computational fluid dynamics (CFD) simulations for which the mesh resolves the geometry of the turbines and captures the rotation and large deflections of blades. Whereas such simulations for a single turbine are arguably petascale class, multi-turbine wind farm simulations will require exascale-class resources. The primary physics codes in the ExaWind simulation environment are Nalu-Wind, an unstructured-grid solver for the acoustically incompressible Navier-Stokes equations, AMR-Wind, a block-structured-grid solver with adaptive mesh refinement capabilities, and OpenFAST, a wind-turbine structural dynamics solver. The Nalu-Wind model consists of the mass-continuity Poisson-type equation for pressure and Helmholtz-type equations for transport of momentum and other scalars. For such modeling approaches, simulation times are dominated by linear-system setup and solution for the continuity and momentum systems. For the ExaWind challenge problem, the moving meshes greatly affect overall solver costs as reinitialization of matrices and recomputation of preconditioners is required at every time step. The choice of overset-mesh methodology to model the moving and non-moving parts of the computational domain introduces constraint equations in the elliptic pressure-Poisson solver. The presence of constraints greatly affects the performance of algebraic multigrid preconditioners.

More Details

ExaWind: Exascale Predictive Wind Plant Flow Physics Modeling

Sprague, M.; Ananthan, S.; Brazell, M.; Glaws, A.; De Frahan, M.; King, R.; Natarajan, M.; Rood, J.; Sharma, A.; Sirydowicz, K.; Thomas, S.; Vijaykumar, G.; Yellapantula, S.; Crozier, Paul C.; Berger-Vergiat, Luc B.; Cheung, Lawrence C.; Glaze, D.J.; Hu, Jonathan J.; Knaus, Robert C.; Lee, Dong H.; Okusanya, Tolulope O.; Overfelt, James R.; Rajamanickam, Sivasankaran R.; Sakievich, Philip S.; Smith, Timothy A.; Vo, Johnathan V.; Williams, Alan B.; Yamazaki, Ichitaro Y.; Turner, J.; Prokopenko, A.; Wilson, R.; Moser, R.; Melvin, J.; Sitaraman, J.

Abstract not provided.

Nalu-Wind and OpenFAST: A high-fidelity modeling and simulation environment for wind energy. Milestone ECP-Q2-FY19

Ananthan, Shreyas; Capone, Luigi; Henry De Frahan, Marc; Hu, Jonathan J.; Melvin, Jeremy; Overfelt, James R.; Sharma, Ashesh; Sitaraman, Jay; Swirydowicz, Katarzyna; Thomas, Stephen; Vijayakumar, Ganesh; Williams, Alan B.; Yellapantula, Shashank; Sprague, Michael

The goal of the ExaWind project is to enable predictive simulations of wind farms comprised of many megawatt-scale turbines situated in complex terrain. Predictive simulations will require computational fluid dynamics (CFD) simulations for which the mesh resolves the geometry of the turbines and captures the rotation and large deflections of blades. Whereas such simulations for a single turbine are arguably petascale class, multi-turbine wind farm simulations will require exascale-class resources. The primary physics codes in the ExaWind project are Nalu-Wind, which is an unstructured-grid solver for the acoustically incompressible Navier-Stokes equations, and OpenFAST, which is a whole-turbine simulation code. The Nalu-Wind model consists of the mass-continuity Poisson-type equation for pressure and a momentum equation for the velocity. For such modeling approaches, simulation times are dominated by linear-system setup and solution for the continuity and momentum systems. For the ExaWind challenge problem, the moving meshes greatly affect overall solver costs as reinitialization of matrices and recomputation of preconditioners is required at every time step. This milestone represents the culmination of several parallel development activities towards the goal of establishing a full-physics simulation capability for modeling wind turbines operating in turbulent atmospheric inflow conditions. The demonstration simulation performed in this milestone is the first step towards the "ground truth" simulation and includes the following components: neutral atmospheric boundary layer inflow conditions generated using a precursor simulation, a hybrid RANS/LES simulation of the wall-resolved turbine geometry, hybridization of the turbulence equations using a blending function approach to transition from the atmospheric scales to the blade boundary layer scales near the turbine, fluid-structure interaction (FSI) that accounts for the complete set of blade deformations (bending, twisting and pitch motion, yaw and tower displacements) by coupling to a comprehensive turbine dynamics code (OpenFAST). The use of overset mesh methodology for the simulations in this milestone presents a significant deviation from the previous efforts where a sliding mesh approach was employed to model the rotation of the turbine blades. The choice of overset meshes was motivated by the need to handle arbitrarily large deformations of the blade and to allow for blade pitching in the presence of a controller and the ease of mesh generation compared to the sliding mesh approach. FSI and the new timestep algorithm used in the simulations were developed in partnership with the A2e High-Fidelity Modeling project. The individual physics components were verified and validated (V%V) through extensive code-to-code comparisons and with experiments where possible. The detailed V&V efforts provide confidence in the final simulation where these physics models were combined together even though no detailed experimental data is available to perform validation of the final configuration. Taken together, this milestone successfully demonstrated the most advanced simulation to date that has been performed with Nalu-Wind.

More Details

Tetrahedral Mesh Adaptation for Lagrangian Shock Hydrodynamics

Computers and Mathematics with Applications (Oxford)

Ibanez-Granados, Daniel A.; Love, Edward L.; Voth, Thomas E.; Overfelt, James R.; Laros, James H.; Hansen, Glen H.

Lagrangian shock hydrodynamics simulations will fail to proceed past a certain time if the mesh is approaching tangling. A common solution is an Arbitrary Lagrangian Eulerian (ALE) form, in which the mesh is improved (remeshing) and the solution is remapped onto the improved mesh. The simplest remeshing techniques involve moving only the nodes of the mesh. More advanced remeshing techniques involve altering the mesh connectivity in portions of the domain in order to prevent tangling. Work has been done using Voronoi-based polygonal mesh generators and 2D quad/triangle mesh adaptation. Here, this paper presents the use of tetrahedral mesh adaptation methods as the remeshing step in an otherwise Lagrangian finite element shock hydrodynamics code called Alexa.

More Details

Deploy production sliding mesh capability with linear solver benchmarking (ECP Milestone Report, Ver. 1.0)

Domino, Stefan P.; Barone, Matthew F.; Williams, Alan B.; Knaus, Robert C.; Overfelt, James R.

Wind applications require the ability to simulate rotating blades. To support this use-case, a novel design-order sliding mesh algorithm has been developed and deployed. The hybrid method combines the control volume finite element methodology (CVFEM) with concepts found within a discontinuous Galerkin (DG) finite element method (FEM) to manage a sliding mesh. The method has been demonstrated to be design-order for the tested polynomial basis (P=1 and P=2) and has been deployed to provide production simulation capability for a Vestas V27 (225 kW) wind turbine. Other stationary and canonical rotating flow simulations are also presented. As the majority of wind-energy applications are driving extensive usage of hybrid meshes, a foundational study that outlines near-wall numerical behavior for a variety of element topologies is presented. Results indicate that the proposed nonlinear stabilization operator (NSO) is an effective stabilization methodology to control Gibbs phenomena at large cell Peclet numbers. The study also provides practical mesh resolution guidelines for future analysis efforts. Application-driven performance and algorithmic improvements have been carried out to increase robustness of the scheme on hybrid production wind energy meshes. Specifically, the Kokkos-based Nalu Kernel construct outlined in the FY17/Q4 ExaWind milestone has been transitioned to the hybrid mesh regime. This code base is exercised within a full V27 production run. Simulation timings for parallel search and custom ghosting are presented. As the low-Mach application space requires implicit matrix solves, the cost of matrix reinitialization has been evaluated on a variety of production meshes. Results indicate that at low element counts, i.e., fewer than 100 million elements, matrix graph initialization and preconditioner setup times are small. However, as mesh sizes increase, e.g., 500 million elements, simulation time associated with "setup-up" costs can increase to nearly 50% of overall simulation time when using the full Tpetra solver stack and nearly 35% when using a mixed Tpetra- Hypre-based solver stack. The report also highlights the project achievement of surpassing the 1 billion element mesh scale for a production V27 hybrid mesh. A detailed timing breakdown is presented that again suggests work to be done in the setup events associated with the linear system. In order to mitigate these initialization costs, several application paths have been explored, all of which are designed to reduce the frequency of matrix reinitialization. Methods such as removing Jacobian entries on the dynamic matrix columns (in concert with increased inner equation iterations), and lagging of Jacobian entries have reduced setup times at the cost of numerical stability. Artificially increasing, or bloating, the matrix stencil to ensure that full Jacobians are included is developed with results suggesting that this methodology is useful in decreasing reinitialization events without loss of matrix contributions. With the above foundational advances in computational capability, the project is well positioned to begin scientific inquiry on a variety of wind-farm physics such as turbine/turbine wake interactions.

More Details

Towards a performance portable compressible CFD code

23rd AIAA Computational Fluid Dynamics Conference, 2017

Howard, Micah A.; Bradley, Andrew M.; Bova, S.W.; Overfelt, James R.; Wagnild, Ross M.; Dinzl, Derek J.; Hoemmen, Mark F.; Klinvex, Alicia M.

High performance computing (HPC) is undergoing a dramatic change in computing architectures. Nextgeneration HPC systems are being based primarily on many-core processing units and general purpose graphics processing units (GPUs). A computing node on a next-generation system can be, and in practice is, heterogeneous in nature, involving multiple memory spaces and multiple execution spaces. This presents a challenge for the development of application codes that wish to compute at the extreme scales afforded by these next-generation HPC technologies and systems - the best parallel programming model for one system is not necessarily the best parallel programming model for another. This inevitably raises the following question: how does an application code achieve high performance on disparate computing architectures without having entirely different, or at least significantly different, code paths, one for each architecture? This question has given rise to the term ‘performance portability’, a notion concerned with porting application code performance from architecture to architecture using a single code base. In this paper, we present the work being done at Sandia National Labs to develop a performance portable compressible CFD code that is targeting the ‘leadership’ class supercomputers the National Nuclear Security Administration (NNSA) is acquiring over the course of the next decade.

More Details

Towards a performance portable compressible CFD code

23rd AIAA Computational Fluid Dynamics Conference, 2017

Howard, Micah A.; Bradley, Andrew M.; Bova, S.W.; Overfelt, James R.; Wagnild, Ross M.; Dinzl, Derek J.; Hoemmen, Mark F.; Klinvex, Alicia M.

High performance computing (HPC) is undergoing a dramatic change in computing architectures. Nextgeneration HPC systems are being based primarily on many-core processing units and general purpose graphics processing units (GPUs). A computing node on a next-generation system can be, and in practice is, heterogeneous in nature, involving multiple memory spaces and multiple execution spaces. This presents a challenge for the development of application codes that wish to compute at the extreme scales afforded by these next-generation HPC technologies and systems - the best parallel programming model for one system is not necessarily the best parallel programming model for another. This inevitably raises the following question: how does an application code achieve high performance on disparate computing architectures without having entirely different, or at least significantly different, code paths, one for each architecture? This question has given rise to the term ‘performance portability’, a notion concerned with porting application code performance from architecture to architecture using a single code base. In this paper, we present the work being done at Sandia National Labs to develop a performance portable compressible CFD code that is targeting the ‘leadership’ class supercomputers the National Nuclear Security Administration (NNSA) is acquiring over the course of the next decade.

More Details

The Aeras Next Generation Global Atmosphere Model

Bosler, Peter A.; Bova, S.W.; Demeshko, Irina P.; Fike, Jeffrey A.; Guba, Oksana G.; Overfelt, James R.; Roesler, Erika L.; Salinger, Andrew G.; Smith, Thomas M.; Kalashnikova, Irina; Watkins, Jerry E.

The Next Generation Global Atmosphere Model LDRD project developed a suite of atmosphere models: a shallow water model, an x-z hydrostatic model, and a 3D hydrostatic model, by using Albany, a finite element code. Albany provides access to a large suite of leading-edge Sandia high-performance computing technologies enabled by Trilinos, Dakota, and Sierra. The next-generation capabilities most relevant to a global atmosphere model are performance portability and embedded uncertainty quantification (UQ). Performance portability is the capability for a single code base to run efficiently on diverse set of advanced computing architectures, such as multi-core threading or GPUs. Embedded UQ refers to simulation algorithms that have been modified to aid in the quantifying of uncertainties. In our case, this means running multiple samples for an ensemble concurrently, and reaping certain performance benefits. We demonstrate the effectiveness of these approaches here as a prelude to introducing them into ACME.

More Details

Visco-TTI-elastic FWI using discontinuous galerkin

SEG Technical Program Expanded Abstracts

Ober, Curtis C.; Smith, Thomas M.; Overfelt, James R.; Collis, Samuel S.; von Winckel, Gregory J.; van Bloemen Waanders, Bart G.; Downey, Nathan J.; Mitchell, Scott A.; Bond, Stephen D.; Aldridge, David F.; Krebs, Jerome R.

The need to better represent the material properties within the earth's interior has driven the development of higherfidelity physics, e.g., visco-tilted-transversely-isotropic (visco- TTI) elastic media and material interfaces, such as the ocean bottom and salt boundaries. This is especially true for full waveform inversion (FWI), where one would like to reproduce the real-world effects and invert on unprocessed raw data. Here we present a numerical formulation using a Discontinuous Galerkin (DG) finite-element (FE) method, which incorporates the desired high-fidelity physics and material interfaces. To offset the additional costs of this material representation, we include a variety of techniques (e.g., non-conformal meshing, and local polynomial refinement), which reduce the overall costs with little effect on the solution accuracy.

More Details

Synthetic study of raw-data FWI applied to visco-TTI-elastic data

SEG Technical Program Expanded Abstracts

Krebs, Jerome R.; Ober, Curtis C.; Smith, Thomas M.; Overfelt, James R.; Collis, Samuel S.; von Winckel, Gregory J.; van Bloemen Waanders, Bart G.; Downey, Nathan J.; Aldridge, David F.

We present a synthetic study investigating the resolution limits of Full Wavefield Inversion (FWI) when applied to data generated from a visco-TTI-elastic (VTE) model. We compare VTE inversion having fixed Q and TTI, with acoustic inversion of acoustically generated data and elastic inversion of elastically generated data.

More Details
Results 1–25 of 34
Results 1–25 of 34