Publications

Results 26–34 of 34

Search results

Jump to search filters

Conforming quadrilaterals meshes on the cubed sphere

Levy, Michael N.; Overfelt, James R.; Taylor, Mark A.

The cubed sphere geometry, obtained by inscribing a cube in a sphere and mapping points between the two surfaces using a gnomonic (central) projection, is commonly used in atmospheric models because it is free of polar singularities and is well-suited for parallel computing. Global meshes on the cubed-sphere typically project uniform (square) grids from each face of the cube onto the sphere, and if refinement is desired then it is done with non-conforming meshes - overlaying the area of interest with a finer uniform mesh, which introduces so-called hanging nodes on edges along the boundary of the fine resolution area. An alternate technique is to tile each face of the cube with quadrilaterals without requiring the quads to be rectangular. These meshes allow for refinement in areas of interest with a conforming mesh, providing a smoother transition between high and low resolution portions of the grid than non-conforming refinement. The conforming meshes are demonstrated in HOMME, NCAR's High Order Method Modeling Environment, where two modifications have been made: the dependence on uniform meshes has been removed, and the ability to read arbitrary quadrilateral meshes from a previously-generated file has been added. Numerical results come from a conservative spectral element method modeling a selection of the standard shallow water test cases.

More Details

Elastic wave propagation in variable media using a discontinuous Galerkin method

Society of Exploration Geophysicists International Exposition and 80th Annual Meeting 2010, SEG 2010

Smith, Thomas M.; Collis, Samuel S.; Ober, Curtis C.; Overfelt, James R.; Schwaiger, Hans F.

Motivated by the needs of seismic inversion and building on our prior experience for fluid-dynamics systems, we present a high-order discontinuous Galerkin (DG) Runge-Kutta method applied to isotropic, linearized elasto-dynamics. Unlike other DG methods recently presented in the literature, our method allows for inhomogeneous material variations within each element that enables representation of realistic earth models — a feature critical for future use in seismic inversion. Likewise, our method supports curved elements and hybrid meshes that include both simplicial and nonsimplicial elements. We demonstrate the capabilities of this method through a series of numerical experiments including hybrid mesh discretizations of the Marmousi2 model as well as a modified Marmousi2 model with a oscillatory ocean bottom that is exactly captured by our discretization.

More Details
Results 26–34 of 34
Results 26–34 of 34