We have developed an ambient temperature, SiO2/Si wafer - scale process for Josephson junctions based on Nb electrodes and Ta x N barriers with tunable electronic properties. The films are fabricated by magnetron sputtering. The electronic properties of the TaxN barriers are controlled by adjusting the nitrogen flow during sputtering. This technology offers a scalable alternative to the more traditional junctions based on AlOx barriers for low - power, high - performance computing.
Niobium and niobium nitride thin films are transitioning from fundamental research toward wafer scale manufacturing with technology drivers that include superconducting circuits and electronics, optical single photon detectors, logic, and memory. Successful microfabrication requires precise control over the properties of sputtered superconducting films, including oxidation. Previous work has demonstrated the mechanism in oxidation of Nb and how film structure could have deleterious effects upon the superconducting properties. This study provides an examination of atmospheric oxidation of NbN films. By examination of the room temperature sheet resistance of NbN bulk oxidation was identified and confirmed by secondary ion mass spectrometry. Meissner magnetic measurements confirmed the bulk oxidation not observed with simple cryogenic resistivity measurements.
Properties of NbN and TaxN thin films grown at ambient temperatures on SiO2/Si substrates by reactive-pulsed laser deposition and reactive magnetron sputtering (MS) as a function of N2 gas flow were investigated. Both techniques produced films with smooth surfaces, where the surface roughness did not depend on the N2 gas flow during growth. High crystalline quality, (111) oriented NbN films with Tc up to 11 K were produced by both techniques for N contents near 50%. The low temperature transport properties of the TaxN films depended upon both the N2 partial pressure used during growth and the film thickness. The root mean square surface roughness of TaxN films grown by MS increased as the film thickness decreased down to 10 nm.
Vacuum gap λ/2 microwave resonators are demonstrated as a route toward higher integration in superconducting qubit circuits. The resonators are fabricated from pieces on two silicon chips bonded together with an In-Sb bond. Measurements of the devices yield resonant frequencies in good agreement with simulations. Creating low loss circuits in this geometry is also discussed.
Superconducting qubits have made great strides in coherence time, gating, and algorithms. However, to achieve real scalability, more is required. We propose to study the problem of coupling and decoupling a transmon, a popular type of superconducting qubit, from its host resonator, which serves the dual role of a bus connecting qubits together and a readout channel. The transmon couples to its host resonator via its electric-dipole moment. We plan to use a trick of quantum mechanics to null the dipole moment and decouple the transmon. In doing so, we hope to study a variety of physics associated with multi-qubit operation, control, and readout.
This work demonstrates the use of FIB implanted Ga as a lithographic mask for plasma etching of Nb films. Using a highly collimated Ga beam of a FIB, Nb is implanted 12 nm deep with a 14 nm thick Ga layer providing etch selectivity better than 15:1 with fluorine based etch chemistry. Implanted square test patterns, both 10 um by and 10 um and 100 um by 100 um, demonstrate that doses above than 7.5 x 1015 cm-2 at 30 kV provide adequate mask protection for a 205 nm thick, sputtered Nb film. The resolution of this dry lithographic technique is demonstrated by fabrication of nanowires 75 nm wide by 10 um long connected to 50 um wide contact pads. The residual resistance ratio of patterned Nb films was 3. The superconducting transition temperature, Tc =7.7 K, was measured using MPMS. This nanoscale, dry lithographic technique was extended to sputtered TiN and Ta here and could be used on other fluorine etched superconductors such as NbN, NbSi, and NbTi.