Development of NbTiN constriction junctions and superconducting quantum interference devices
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Here we present the development of the building blocks of a Josephson parametric amplifier (JPA), namely the superconducting quantum interference device (SQUID) and the inductive pick-up coil that permits current coupling from a quantum dot into the SQUID. We also discuss our efforts in making depletion mode quantum dots using delta doped GaAs quantum wells. Because quantum dot based spin qubits utilize very low-level (~10 - 100pA), short duration (1ms - 1μs) current signals for state preparation and readout, these systems require close proximity cryogenic amplification to prevent signal corruption. Common amplification methods in these semiconductor quantum dots rely on heterojunction bipolar transistors (HBTs) and high electron mobility transistors (HEMTs) to amplify the readout signal from a single qubit. The state of the art for HBTs and HEMTs produce approximately 10µW of power when operating at high bandwidths. For few-qubit systems this level of heat dissipation is acceptable. However, for scaling up the number of qubits to several hundred or a thousand, the heat load produced in a 1 to 1 amplifier to qubit arrangement would overload the cooling capacity of a common dilution refrigerator, which typically has a cooling power of ~100µW at its base temperature. Josephson parametric amplifiers have been shown to dissipate ~1pW of power with current sensitivies on par with HBTs and HEMTs and with bandwidths 30 times that of HBTs and HEMTs, making them attractive for multi-qubit platforms. In this report we describe in detail the fabrication process flow for developing inductive pick-up coils and the fabrication and measurement of NbTiN and A1/A1Ox/A1 SQUIDs.
IEEE Transactions on Applied Superconductivity
We report on the fabrication and characterization of Nb/Ta-N/Nb Josephson junctions grown by room temperature magnetron sputtering on 150-mm diameter Si wafers. Junction characteristics depend upon the Ta-N barrier composition, which was varied by adjusting the N2 flow during film deposition. Higher N2 flow rates raise the barrier resistance and increase the junction critical current. This work demonstrates the viability of Ta-N as an alternative barrier to aluminum oxide, with the potential for large scale integration.
IEEE Transactions on Applied Superconductivity
We measure the frequency dependence of a niobium microstrip resonator as a function of temperature from 1.4 to 8.4 K. In a 2-micrometer-wide half-wave resonator, we find the frequency of resonance changes by a factor of 7 over this temperature range. From the resonant frequencies, we extract inductance per unit length, characteristic impedance, and propagation velocity (group velocity). We discuss how these results relate to superconducting electronics. Over the 2 K to 6 K temperature range where superconducting electronic circuits operate, inductance shows a 19% change and both impedance and propagation velocity show an 11% change.
IEEE Transactions on Applied Superconductivity
In a previous paper, we described a new abstract circuit model for reversible computation called asynchronous ballistic reversible computing (ABRC), in which localized information-bearing pulses propagate ballistically along signal paths between stateful abstract devices and elastically scatter off those devices serially, while updating the device state in a logically-reversible and deterministic fashion. The ABRC model has been shown to be capable of universal computation. In the research reported here, we begin exploring how the ABRC model might be realized in practice using single flux quantum solitons (fluxons) in superconducting Josephson junction (JJ) circuits. One natural family of realizations could utilize fluxon polarity to represent binary data in individual pulses propagating near-ballistically, along discrete or continuous long Josephson junctions or microstrip passive transmission lines, and utilize the flux charge (-1, 0, +1) of a JJ-containing superconducting loop with Φ0 < IcL < 2Φ0 to encode a ternary state variable internal to a device. A natural question then arises as to which of the definable abstract ABRC device functionalities using this data representation might be implementable using a JJ circuit that dissipates only a small fraction of the input fluxon energy. We discuss conservation rules and symmetries considered as constraints to be obeyed in these circuits, and begin the process of classifying the possible ABRC devices in this family having up to three bidirectional I/O terminals, and up to three internal states.
Abstract not provided.
ISEC 2019 - International Superconductive Electronics Conference
In an ongoing project at Sandia National Laboratories, we are attempting to develop a novel style of superconducting digital processing, based on a new model of reversible computation called Asynchronous Ballistic Reversible Computing (ABRC). We envision an approach in which polarized flux-ons scatter elastically from near-lossless functional components, reversibly updating the local digital state of the circuit, while dissipating only a small fraction of the input fluxon energy. This approach to superconducting digital computation is sufficiently unconventional that an appropriate methodology for hand-design of such circuits is not immediately obvious. To gain insight into the design principles that are applicable in this new domain, we are creating a software tool to automatically enumerate possible topologies of reactive, undamped Josephson junction circuits, and sweep the parameter space of each circuit searching for designs exhibiting desired dynamical behaviors. But first, we identified by hand a circuit implementing the simplest possible nontrivial ABRC functional behavior with bits encoded as conserved polarized fluxons, namely, a one-bit reversible memory cell with one bidirectional I/O port. We expect the tool to be useful for designing more complex circuits.
Abstract not provided.
Abstract not provided.
IEEE Transactions on Applied Superconductivity
In a previous study, we described a new abstract circuit model for reversible computation called Asynchronous Ballistic Reversible Computing (ABRC), in which localized information bearing pulses propagate ballistically along signal paths between stateful abstract devices, and elastically scatter off those devices serially, while updating the device state in a logically-reversible and deterministic fashion. The ABRC model has been shown to be capable of universal computation. In the research reported here, we begin exploring how the ABRC model might be realized in practice using single flux quantum (SFQ) solitons (fluxons) in superconducting Josephson junction (JJ) circuits. One natural family of realizations could utilize fluxon polarity to represent binary data in individual pulses propagating near-ballistically along discrete or continuous long Josephson junctions (LJJs) or microstrip passive transmission lines (PTLs), and utilize the flux charge (-1, 0, +1) of a JJ-containing superconducting loop with Φ0 < IcL < 2Φ0 to encode a ternary state variable internal to a device. A natural question then arises as to which of the definable abstract ABRC device functionalities using this data representation might be implementable using a JJ circuit that dissipates only a small fraction of the input fluxon energy. We discuss conservation rules and symmetries considered as constraints to be obeyed in these circuits, and begin the process of classifying the possible ABRC devices in this family having up to 3 bidirectional I/O terminals, and up to 3 internal states.
Applied Physics Letters
Ferroelectricity in doped and alloyed hafnia thin films has been demonstrated using several different electrodes, with TiN and TaN being most prominent. In this work, we demonstrate ferroelectric Hf0.58Zr0.42O2 thin films with superconducting NbN electrodes at cryogenic temperatures. Demonstration of polarization - electric field [P(E)] response at liquid helium cryogenic temperatures, 4 K, suggests that the polarization is switchable over a wide temperature range after an initial 600 °C anneal. Further, room temperature P(E) and capacitance measurements demonstrate an expected polarization response with wake-up required to reach the steady state. Wake-up cycling at 4 K is observed to have no effect upon the ferroelectric phase suggesting an oxygen vacancy mobility freeze out whereas wake-up cycling at 294 K demonstrates close to a 3× increase in remanent polarization. This integration of a ferroelectric Hf0.58Zr0.42O2 thin film with NbN demonstrates the suitability of a highly scalable ferroelectric in applications for cryogenic technologies.
AIP Advances
We measure the charge sensitivity, Se, of a single electron transistor (SET) in the presence of strong (Vrf ~ e/Cg) spurious radio frequency (rf) signals at frequencies up to 50 MHz, where Cg is the gate capacitance. Although Se appears to degrade when exposed to Vrf, we find that broadening of conduction peaks is largely due to the measurement technique and show that Se is maintained even with strong Vrf present. We show cancellation of a known Vrf signal at 1 MHz, demonstrating that a stable bias point in the presence of rf signals is possible.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.