Publications

Results 26–50 of 103

Search results

Jump to search filters

Recent Diagnostic Platform Accomplishments for Studying Vacuum Power Flow Physics at the Sandia Z Accelerator

Laity, George R.; Aragon, Carlos A.; Bennett, Nichelle L.; Bliss, David E.; Laros, James H.; Fierro, Andrew S.; Gomez, Matthew R.; Hess, Mark H.; Hutsel, Brian T.; Jennings, Christopher A.; Johnston, Mark D.; Kossow, Michael R.; Lamppa, Derek C.; Martin, Matthew; Patel, Sonal P.; Porwitzky, Andrew J.; Robinson, Allen C.; Rose, David V.; Vandevender, Pace; Waisman, Eduardo M.; Webb, Timothy J.; Welch, Dale R.; Rochau, G.A.; Savage, Mark E.; Stygar, William; White, William M.; Sinars, Daniel S.; Cuneo, M.E.

Abstract not provided.

Measurements of Z Electrode Temperatures Using Absolutely Calibrated Streaked Visible Spectroscopy Systems and Avalanche Photodiodes

IEEE International Conference on Plasma Science

Patel, Sonal P.; Johnston, Mark D.; Bliss, David E.; Laity, George R.; Gomez, Matthew R.; Falcon, Ross E.; Scoglietti, Daniel S.; Macrunnels, K.A.; Savage, Mark E.; Cuneo, M.E.

Absolute calibration of streaked visible spectroscopy systems has been performed at Z-machine at Sandia National Labs in order to determine temperatures of electrode surfaces during the current pulse. The ability to calibrate the full system, including all fiber optic runs and probes is crucial to understanding errors in the calibration process. The calibration procedure involves imaging a blackbody light source, with a known spectral radiance which is coupled to an integrating sphere. This source is streaked slowly over a few ns using Sydor streak cameras. The slow sweep is converted to a 100-500ns sweep by imaging a bright light source on both sweep rates, and obtaining wavelength and time dependent correction curves. Any broadband light source or several laser lines of differing wavelengths can be used for this correction. This technique has yielded temperature estimates of several eV in the Z convolute.

More Details

Contribution of the backstreaming ions to the self-magnetic pinch (SMP) diode current

Physics of Plasmas

Mazarakis, Michael G.; Cuneo, M.E.; Fournier, Sean D.; Johnston, Mark D.; Kiefer, Mark L.; Leckbee, Joshua L.; Nielsen, D.S.; Oliver, Bryan V.; Sceiford, Matthew S.; Simpson, Sean S.; Renk, Timothy J.; Reyes, Carlos; Webb, Timothy J.; Ziska, Derek Z.; Bennett, Nichelle; Droemer, Darryl W.; Gignac, Raymond E.; Wilkins, Frank L.

The results presented here were obtained with a self-magnetic pinch (SMP) diode mounted at the front high voltage end of the RITS accelerator. RITS is a Self-Magnetically Insulated Transmission Line (MITL) voltage adder that adds the voltage pulse of six 1.3 MV inductively insulated cavities. The RITS driver together with the SMP diode has produced x-ray spots of the order of 1 mm in diameter and doses adequate for the radiographic imaging of high area density objects. Although, through the years, a number of different types of radiographic electron diodes have been utilized with SABER, HERMES III and RITS accelerators, the SMP diode appears to be the most successful and simplest diode for the radiographic investigation of various objects. Our experiments had two objectives: first to measure the contribution of the back-streaming ion currents emitted from the anode target and second to try to evaluate the energy of those ions and hence the Anode-Cathode (A-K) gap actual voltage. In any very high voltage inductive voltage adder utilizing MITLs to transmit the power to the diode load, the precise knowledge of the accelerating voltage applied on the A-K gap is problematic. This is even more difficult in an SMP diode where the A-K gap is very small (∼1 cm) and the diode region very hostile. The accelerating voltage quoted in the literature is from estimates based on the measurements of the anode and cathode currents of the MITL far upstream from the diode and utilizing the para-potential flow theories and inductive corrections. Thus, it would be interesting to have another independent measurement to evaluate the A-K voltage. The diode's anode is made of a number of high-Z metals in order to produce copious and energetic flash x-rays. It was established experimentally that the back-streaming ion currents are a strong function of the anode materials and their stage of cleanness. We have measured the back-streaming ion currents emitted from the anode and propagating through a hollow cathode tip for various diode configurations and different techniques of target cleaning treatment: namely, heating at very high temperatures with DC and pulsed current, with RF plasma cleaning, and with both plasma cleaning and heating. We have also evaluated the A-K gap voltage by energy filtering technique. Experimental results in comparison with LSP simulations are presented.

More Details

Measuring Plasma Formation Field Strength and Current Loss in Pulsed Power Diodes

Johnston, Mark D.; Patel, Sonal P.; Falcon, Ross E.; Cartwright, Keith C.; Kiefer, Mark L.; Cuneo, M.E.; Maron, Yitzhak M.

This LDRD investigated plasma formation, field strength, and current loss in pulsed power diodes. In particular the Self-Magnetic Pinch (SMP) e-beam diode was studied on the RITS-6 accelerator. Magnetic fields of a few Tesla and electric fields of several MV/cm were measured using visible spectroscopy techniques. The magnetic field measurements were then used to determine the current distribution in the diode. This distribution showed that significant beam current extends radially beyond the few millimeter x-ray focal spot diameter. Additionally, shielding of the magnetic field due to dense electrode surface plasmas was observed, quantified, and found to be consistent with the calculated Spitzer resistivity. In addition to the work on RITS, measurements were also made on the Z-machine looking to quantify plasmas within the power flow regions. Measurements were taken in the post-hole convolute and final feed gap regions on Z. Dopants were applied to power flow surfaces and measured spectroscopically. These measurements gave species and density/temperature estimates. Preliminary B-field measurements in the load region were attempted as well. Finally, simulation work using the EMPHASIS, electromagnetic particle in cell code, was conducted using the Z MITL conditions. The purpose of these simulations was to investigate several surface plasma generations models under Z conditions for comparison with experimental data.

More Details
Results 26–50 of 103
Results 26–50 of 103