Publications

6 Results

Search results

Jump to search filters

LYNM-PE1 Seismic Parameters from Borehole Log, Laboratory, and Tabletop Measurements

Wilson, Jennifer E.; Bodmer, Miles A.; Townsend, Margaret J.; Choens, Robert C.; Bartlett, Tara; Dietel, Matthew; Downs, Nicholas M.; Laros, James H.; Smith, Devon; Larotonda, Jennifer M.; Jaramillo, Johnny L.; Barrow, Perry C.; Kibikas, William M.; Sam, Robert C.W.P.; Broome, Scott T.; Davenport, Kathy D.

The goal of this work is to provide a database of quality-checked seismic parameters which can be integrated with the Geologic Framework Model (GFM) for the LYNM-PE1 (Low Yield Nuclear Monitoring – Physical Experiment 1) testbed. We integrated data from geophysical borehole logs, tabletop measurements on collected core, and laboratory measurements.

More Details

PE1 Site Characterization: Data Documentation on Geologic and Hydrologic Lab Testing

Wilson, Jennifer E.; Heath, Jason; Kuhlman, Kristopher L.; Xu, Guangping X.; Bodmer, Miles A.; Broome, Scott T.; Jaramillo, Johnny L.; Barrow, Perry C.; Rodriguez, Mark A.; Griego, James J.M.; Valdez, Nichole R.

This data documentation report describes geologic and hydrologic laboratory analysis and data collected in support of site characterization of the Physical Experiment 1 (PE1) testbed, Aqueduct Mesa, Nevada. The documentation includes a summary of laboratory tests performed, discussion of sample selection for assessing heterogeneity of various testbed properties, methods, and results per data type.

More Details

P- and S-Wave velocity and Indirect Tensile Measurements for Alluvium in Support of the Source Physics Experiments

Broome, Scott T.; Jaramillo, Johnny L.

Mechanical properties on alluvium blocks and core samples were determined to support the Source Physics Experiment Dry Alluvium Geology experimental series. Because material was not available directly from the experimental location, the alluvium blocks and core samples are intended to serve as surrogate material . P - and S - wave velocity was measured on cubes cut from the alluvium blocks and core with the intention to study variation from water content and measured direction (material anisotropy). Indirect tensile tests were conducted dry and with moisture ranging from 6 to 9.1%. For the range of water content tested, increasing moisture level resulted in slower P - and S - wave velocities. P - and S - wave variability is less influenced by material heterogeneity than moisture content. P - wave velocity ranges from 629 m/s to 2599 m/s and S - wave velocity ranges from 288 m/s to 1200 m/s. Counter to the velocity measurement findings, material variability on indirect tensile strength has a greater effect than moisture content. Compared to dry strength and at moisture levels from 6 to 9% the block's tensile strength was lowered by at least a factor of 5. Indirect tensile strength for the first block averaged 0.35 MPa and 0.25 MPa for dry and 8.9% moisture respectively. For the second block indirect tensile strength averaged 0.05 MPa for both dry and 6.4% moisture.

More Details

Material Property Determinations of P-Tunnel Core in Support of UNESE

Broome, Scott T.; Wilson, Jennifer E.; Swanson, Erika; Sussman, Aviva J.; Jaramillo, Johnny L.; Barrow, Perry C.

A critical component of the Underground Nuclear Explosion Signatures Experiment (UNESE) program is a realistic understanding of the post-detonation processes and changes in the environment that produce observable physical and radio-chemical signatures. Rock and fracture properties are essential parameters for modeling underground nuclear explosions. In response to the need for accurate simulations of physical and radio-chemical signatures, an experimental program to determine porosity, hydrostatic and triaxial compression, and Brazilian disc tension properties of P-Tunnel core was developed and executed. This report presents the results from the experimental program. Dry porosity for P-Tunnel core ranged from 8.7%-55%. Based on hydrostatic testing, bulk modulus was shown to increase with increasing confining pressure and ranged from 1.3GPa-42.3GPa. Compressional failure envelopes, derived from wet samples, are presented for P-Tunnel lithologies. Brazilian disc tension tests were conducted on wet samples and, along with triaxial tests, are compared with dry tests from the first UNESE test bed, Barnwell. P-Tunnel core disc tension test strength varied nearly two orders of magnitude between lithologies (0.03MPa-2.77MPa). Material tested in both tension and compression is weaker wet than dry with the exception of Strongly Welded Tuff in compression which is nearly identical in compressive strength for confining pressures of OMPa and 1 OOMPa. In addition to the inherent material properties of the rocks, fractures within the samples were quantified and characterized, in order to identify differences that might be caused by the explosion-induced damage. Finally, material property determinations are linked to optical microscopy observations. The work presented here is part of a broader material characterization effort; reports are referenced within.

More Details

Material Property Determinations for Alluvium in Support of Source Physics Experiment

Broome, Scott T.; Barrow, Perry C.; Jaramillo, Johnny L.

Two blocks of alluvium were extensively tested at the Sandia National Laboratories Geomechanics laboratory. The alluvium blocks are intended to serve as surrogate material for mechanical property determinations to support the SPE DAG experimental series. From constant mean stress triaxial testing, strength failure envelopes were parameterized and are presented for each block. Modulus and stress relationships are given including bulk modulus versus mean stress, shear modulus versus shear stress, Young's modulus versus axial stress and Poisson's ratio versus axial stress. In addition, P-&S-wave velocities, and porosity, determined using helium porosimetry, were obtained on each block. Generally, both Young's modulus and Poisson's ratio increase with increasing axial stress, bulk modulus increases with increasing pressure, and increases more dramatically upon pore crush, shear modulus decreases with increasing shear stress and then appears to plateau. The Unconfined Compressive Strength for the BM is in the range of 0.5-0.6, and for SM in the range of 2.0-2.6 MPa. The confined compressive strength increases with increasing confining pressure, and the BM alluvium is significantly weaker compared to SM alluvium for mean stress levels above 8 MPa.

More Details
6 Results
6 Results