Publications

36 Results

Search results

Jump to search filters

Quantum Nanofabrication: Mechanisms and Fundamental Limits

Wang, George T.; Coltrin, Michael E.; Lu, Ping; Miller, Philip R.; Leung, Benjamin; Xiao, Xiaoyin; Sapkota, Keshab R.; Leonard, Francois; Bran Anleu, Gabriela A.; Koleske, Daniel D.; Tsao, Jeffrey Y.; Balakrishnan, Ganesh; Addamane, Sadhvikas; Nelson, Jeffrey

Quantum-size-controlled photoelectrochemical (QSC-PEC) etching, which uses quantum confinement effects to control size, can potentially enable the fabrication of epitaxial quantum nanostructures with unprecedented accuracy and precision across a wide range of materials systems. However, many open questions remain about this new technique, including its limitations and broader applicability. In this project, using an integrated experimental and theoretical modeling approach, we pursue a greater understanding of the time-dependent QSC-PEC etch process and to uncover the underlying mechanisms that determine its ultimate accuracy and precision. We also seek to broaden our understanding of the scope of its ultimate applicability in emerging nanostructures and nanodevices.

More Details

Microsystem Enabled Photovoltaics

Nielson, Gregory; Cruz Campa, Jose L.; Okandan, Murat; Lentine, Anthony L.; Sweatt, W.C.; Gupta, Vipin P.; Tauke-Pedretti, Anna; Jared, Bradley H.; Resnick, Paul; Cederberg, Jeffrey; Paap, Scott M.; Sanchez, Carlos A.; Biefeld, Robert M.; Langlois, Eric; Yang, Benjamin; Koleske, Daniel; Wierer, Jonathan; Miller, William K.; Elisberg, Brenton; Foulk, James W.; Luna, Ian; Saavedra, Michael P.; Alford, Charles; Ballance, Mark; Wiwi, Michael; Samora, Sally; Chavez, Julie; Pipkin, Jennifer R.; Nguyen, Janet; Anderson, Ben; Gu, Tian; Agrawal, Gautum; Nelson, Jeffrey

Abstract not provided.

Ultra-thin single crystal silicon modules capable of 450 W/kg and bending radii <1mm: Fabrication and characterization

Conference Record of the IEEE Photovoltaic Specialists Conference

Nielson, Gregory N.; Okandan, Murat; Resnick, Paul; Sanchez, Carlos A.; Yang, Benjamin B.; Kilgo, Alice C.; Ford, Christine L.; Nelson, Jeffrey

We present ultra-thin single crystal mini-modules built with specific power of 450 W/kg capable of voltages of >1000 V/cm2. These modules are also ultra-flexible with tight bending radii down to 1 mm. The module is composed of hundreds of back contact microcells with thicknesses of approximately 20 μm and diameters between 500-720 μm. The cells are interconnected to a flexible circuit through solder contacts. We studied the characteristics of several mini-modules through optical inspection, evaluation of quantum efficiency, measurement of current-voltage curves, and temperature dependence. Major efficiency losses are caused by missing cells or non-interconnected cells. Secondarily, damage incurred during separation of 500 μm cells from the substrate caused material detachment. The detachment induced higher recombination and low performance. Modules made with the larger cells (720 μm) performed better due to having no missing cells, no material detachment and optimized AR coatings. The conversion efficiency of the best mini module was 13.75% with a total Voc = 7.9 V. © 2013 IEEE.

More Details

Ultra-thin single crystal silicon modules capable of 450 W/kg and bending radii <1mm: Fabrication and characterization

Conference Record of the IEEE Photovoltaic Specialists Conference

Nielson, Gregory N.; Okandan, Murat; Resnick, Paul; Sanchez, Carlos A.; Yang, Benjamin B.; Kilgo, Alice C.; Ford, Christine L.; Nelson, Jeffrey

We present ultra-thin single crystal mini-modules built with specific power of 450 W/kg capable of voltages of >1000 V/cm2. These modules are also ultra-flexible with tight bending radii down to 1 mm. The module is composed of hundreds of back contact microcells with thicknesses of approximately 20 μm and diameters between 500-720 μm. The cells are interconnected to a flexible circuit through solder contacts. We studied the characteristics of several mini-modules through optical inspection, evaluation of quantum efficiency, measurement of current-voltage curves, and temperature dependence. Major efficiency losses are caused by missing cells or non-interconnected cells. Secondarily, damage incurred during separation of 500 μm cells from the substrate caused material detachment. The detachment induced higher recombination and low performance. Modules made with the larger cells (720 μm) performed better due to having no missing cells, no material detachment and optimized AR coatings. The conversion efficiency of the best mini module was 13.75% with a total Voc = 7.9 V. © 2013 IEEE.

More Details

Cost analysis for flat-plate concentrators employing microscale photovoltaic cells

Conference Record of the IEEE Photovoltaic Specialists Conference

Paap, Scott M.; Nelson, Jeffrey; Gupta, Vipin P.; Cruz-Campa, Jose L.; Okandan, Murat; Sweatt, W.C.; Jared, Bradley H.; Anderson, Benjamin J.; Nielson, Gregory N.; Tauke-Pedretti, Anna

Microsystems Enabled Photovoltaics (MEPV) is a relatively new field that uses microsystems tools and manufacturing techniques familiar to the semiconductor industry to produce microscale photovoltaic cells. The miniaturization of these PV cells creates new possibilities in system designs that may be able to achieve the US Department of Energy (DOE) price target of $1/Wp by 2020 for utility-scale electricity generation. In this article, we introduce analytical tools and techniques to estimate the costs associated with a concentrating photovoltaic system that uses microscale photovoltaic cells and miniaturized optics. The overall model comprises the component costs associated with the PV cells, concentrating optics, balance of systems, installation, and operation. Estimates include profit margin and are discussed in the context of current and projected prices for non-concentrating and concentrating photovoltaics. Our analysis indicates that cells with a width of between 100 and 300 μm will minimize the module costs of the initial design within the range of concentration ratios considered. To achieve the DOE price target of $1/Wp by 2020, module efficiencies over 35% will likely be necessary. © 2013 IEEE.

More Details

Cost analysis for flat-plate concentrators employing microscale photovoltaic cells

Conference Record of the IEEE Photovoltaic Specialists Conference

Paap, Scott M.; Nelson, Jeffrey; Gupta, Vipin P.; Cruz-Campa, Jose L.; Okandan, Murat; Sweatt, W.C.; Jared, Bradley H.; Anderson, Benjamin J.; Nielson, Gregory N.; Tauke-Pedretti, Anna

Microsystems Enabled Photovoltaics (MEPV) is a relatively new field that uses microsystems tools and manufacturing techniques familiar to the semiconductor industry to produce microscale photovoltaic cells. The miniaturization of these PV cells creates new possibilities in system designs that may be able to achieve the US Department of Energy (DOE) price target of $1/Wp by 2020 for utility-scale electricity generation. In this article, we introduce analytical tools and techniques to estimate the costs associated with a concentrating photovoltaic system that uses microscale photovoltaic cells and miniaturized optics. The overall model comprises the component costs associated with the PV cells, concentrating optics, balance of systems, installation, and operation. Estimates include profit margin and are discussed in the context of current and projected prices for non-concentrating and concentrating photovoltaics. Our analysis indicates that cells with a width of between 100 and 300 μm will minimize the module costs of the initial design within the range of concentration ratios considered. To achieve the DOE price target of $1/Wp by 2020, module efficiencies over 35% will likely be necessary. © 2013 IEEE.

More Details

Final report for %22High performance computing for advanced national electric power grid modeling and integration of solar generation resources%22, LDRD Project No. 149016

Schoenwald, David A.; Richardson, Bryan T.; Riehm, Andrew C.; Wolfenbarger, Paul; Adams, Brian M.; Reno, Matthew J.; Hansen, Clifford; Oldfield, Ron; Stamp, Jason E.; Stein, Joshua; Hoekstra, Robert J.; Nelson, Jeffrey; Munoz-Ramos, Karina; Mclendon, William; Russo, Thomas V.; Phillips, Laurence R.

Design and operation of the electric power grid (EPG) relies heavily on computational models. High-fidelity, full-order models are used to study transient phenomena on only a small part of the network. Reduced-order dynamic and power flow models are used when analysis involving thousands of nodes are required due to the computational demands when simulating large numbers of nodes. The level of complexity of the future EPG will dramatically increase due to large-scale deployment of variable renewable generation, active load and distributed generation resources, adaptive protection and control systems, and price-responsive demand. High-fidelity modeling of this future grid will require significant advances in coupled, multi-scale tools and their use on high performance computing (HPC) platforms. This LDRD report demonstrates SNL's capability to apply HPC resources to these 3 tasks: (1) High-fidelity, large-scale modeling of power system dynamics; (2) Statistical assessment of grid security via Monte-Carlo simulations of cyber attacks; and (3) Development of models to predict variability of solar resources at locations where little or no ground-based measurements are available.

More Details

Final LDRD report :ultraviolet water purification systems for rural environments and mobile applications

Crawford, Mary H.; Ross, Michael P.; Ruby, Douglas S.; Nelson, Jeffrey; Allerman, A.A.

We present the results of a one year LDRD program that has focused on evaluating the use of newly developed deep ultraviolet LEDs in water purification. We describe our development efforts that have produced an LED-based water exposure set-up and enumerate the advances that have been made in deep UV LED performance throughout the project. The results of E. coli inactivation with 270-295 nm LEDs are presented along with an assessment of the potential for applying deep ultraviolet LED-based water purification to mobile point-of-use applications as well as to rural and international environments where the benefits of photovoltaic-powered systems can be realized.

More Details

A Combinatorial Approach to Determine Mechanisms of Atmospheric Copper Sulfidation

Barbour, J.C.; Sullivan, John P.; Braithwaite, J.W.; Missert, Nancy; Nelson, Jeffrey; Dunn, Roberto G.; Minor, Kenneth G.; Copeland, Robert

Parallel microscopic experimentation (the combinatorial approach often used in solid-state science) was applied to characterize atmospheric copper corrosion behavior. Specifically, this technique permitted relative sulfidation rates to be determined for copper containing different levels of point defects and impurities (In, Al, O, and D). Corrosion studies are inherently difficult because of complex interactions between material interfaces and the environment. The combinatorial approach was demonstrated using micron-scale Cu lines that were exposed to a humid air environment containing sub-ppm levels of H{sub 2}S. The relative rate of Cu{sub 2}S growth was determined by measuring the change in resistance of the line. The data suggest that vacancy trapping by In and Al impurities slow the sulfidation rate. Increased sulfidation rates were found for samples containing excess point defects or deuterium. Furthermore, the sulfidation rate of 14 {micro}m wide Cu lines was increased above that for planar films.

More Details

Electronic properties of Si-doped n-doping-intrinsic-p-doping-intrinsic (nipi) structures in GaAs

Nelson, Jeffrey

The electronic properties of heavily and orderly Si-doped nipi structures in GaAs are studied theoretically using the ab-initio self-consistent pseudopotential method within the local density approximation. Two nipi configurations are considered. Besides investigating the nature of the impurity-related band edge states, the xy-planar-averaged local ionic and self-consistent potentials are also analyzed. The screening effect of the host crystal on the doping induced potential is found to be small. The effects of the doping induced electric field and the strain due to dopings are also examined. 13 refs., 9 figs., 2 tabs.

More Details
36 Results
36 Results