Publications

Results 201–225 of 96,771

Search results

Jump to search filters

Use of Hydrogel Electrolyte in Zn-MnO2 Rechargeable Batteries: Characterization of Safety, Performance, and Cu2+ Ion Diffusion

Polymers

Cho, Jungsang; Turney, Damon E.; Yadav, Gautam G.; Nyce, Michael; Wygant, Bryan R.; Lambert, Timothy N.; Banerjee, Sanjoy

Achieving commercially acceptable Zn-MnO2 rechargeable batteries depends on the reversibility of active zinc and manganese materials, and avoiding side reactions during the second electron reaction of MnO2. Typically, liquid electrolytes such as potassium hydroxide (KOH) are used for Zn-MnO2 rechargeable batteries. However, it is known that using liquid electrolytes causes the formation of electrochemically inactive materials, such as precipitation Mn3O4 or ZnMn2O4 resulting from the uncontrollable reaction of Mn3+ dissolved species with zincate ions. In this paper, hydrogel electrolytes are tested for MnO2 electrodes undergoing two-electron cycling. Improved cell safety is achieved because the hydrogel electrolyte is non-spillable, according to standards from the US Department of Transportation (DOT). The cycling of “half cells” with advanced-formulation MnO2 cathodes paired with commercial NiOOH electrodes is tested with hydrogel and a normal electrolyte, to detect changes to the zincate crossover and reaction from anode to cathode. These half cells achieved ≥700 cycles with 99% coulombic efficiency and 63% energy efficiency at C/3 rates based on the second electron capacity of MnO2. Other cycling tests with “full cells” of Zn anodes with the same MnO2 cathodes achieved ~300 cycles until reaching 50% capacity fade, a comparable performance to cells using liquid electrolyte. Electrodes dissected after cycling showed that the liquid electrolyte allowed Cu ions to migrate more than the hydrogel electrolyte. However, measurements of the Cu diffusion coefficient showed no difference between liquid and gel electrolytes; thus, it was hypothesized that the gel electrolytes reduced the occurrence of Cu short circuits by either (a) reducing electrode physical contact to the separator or (b) reducing electro-convective electrolyte transport that may be as important as diffusive transport.

More Details

An Engineered Laccase from Fomitiporia mediterranea Accelerates Lignocellulose Degradation

Biomolecules

Pham, Thanh L.; Deng, Kai; Choudhary, Hemant; Sale, Kenneth L.; Northen, Trent R.; Singer, Steven W.; Adams, Paul D.; Simmons, Blake A.

Laccases from white-rot fungi catalyze lignin depolymerization, a critical first step to upgrading lignin to valuable biodiesel fuels and chemicals. In this study, a wildtype laccase from the basidiomycete Fomitiporia mediterranea (Fom_lac) and a variant engineered to have a carbohydrate-binding module (Fom_CBM) were studied for their ability to catalyze cleavage of β-O-4′ ether and C–C bonds in phenolic and non-phenolic lignin dimers using a nanostructure-initiator mass spectrometry-based assay. Fom_lac and Fom_CBM catalyze β-O-4′ ether and C–C bond breaking, with higher activity under acidic conditions (pH < 6). The potential of Fom_lac and Fom_CBM to enhance saccharification yields from untreated and ionic liquid pretreated pine was also investigated. Adding Fom_CBM to mixtures of cellulases and hemicellulases improved sugar yields by 140% on untreated pine and 32% on cholinium lysinate pretreated pine when compared to the inclusion of Fom_lac to the same mixtures. Adding either Fom_lac or Fom_CBM to mixtures of cellulases and hemicellulases effectively accelerates enzymatic hydrolysis, demonstrating its potential applications for lignocellulose valorization. We postulate that additional increases in sugar yields for the Fom_CBM enzyme mixtures were due to Fom_CBM being brought more proximal to lignin through binding to either cellulose or lignin itself.

More Details

Comparison of atmospheric radionuclide dispersion models for a risk-informed consequence-driven advanced reactor licensing framework

Journal of Environmental Radioactivity

Wang, Jeffrey; Clayton, Daniel J.; Dewji, Shaheen A.

Current nuclear facility emergency planning zones (EPZs) are based on outdated distance-based criteria, predating comprehensive dose and risk-informed frameworks. Recent advancements in simulation tools have permitted the development of site-specific, dose, and risk-based consequence-driven assessment frameworks. This study investigated the computation of advanced reactor (AR) EPZs using two atmospheric dispersion models: a straight-line Gaussian plume model (GPM) and a semi-Lagrangian Particle in Cell (PIC). Two case studies were conducted: (1) benchmarking the NRC SOARCA study for the Peach Bottom Nuclear Generating Station and (2) analyzing an advanced INL Heat Pipe Design A microreactor's end-of-cycle inventory. The dose criteria for both cases were 10 mSv at mean weather conditions and 50 mSv at 95th percentile weather conditions at 96 h post-release. Results demonstrated that GPM and PIC estimated similar mean peak dose levels for large boiling water reactors in the farfield case, placing EPZ limits beyond current regulations. For ARs with source terms remaining in the nearfield, PIC modeling without specific nearfield considerations could result in excessively high doses and inaccurate EPZ designations. PIC dispersion demonstrated an order of magnitude higher estimate of nearfield inhalation dose contribution when compared to GPM results. Both models significantly reduced EPZ sizing within the nearfield. Thus, reductions in the AR source term may eliminate the need for a separate EPZ.

More Details

From ionic clusters dynamics to network constraints in ionic polymer solutions

Physical Review E

Grest, Gary S.; Wijesinghe, Sidath; Kosgallana, Chathurika; Senanayake, Manjula; Mohottalalage, Supun S.; Zolnierczuk, Piotr; Stingaciu, Laura; Perahia, Dvora

Physical networks formed by ionizable polymers with ionic clusters as crosslinks are controlled by coupled dynamics that transcend from ionic clusters through chain motion to macroscopic response. Here, the coupled dynamics, across length scales, from the ionic clusters to the networks in toluene swollen polystyrene sulfonate networks, were directly correlated, as the electrostatic environment of the physical crosslinks was altered. The multiscale insight is attained by coupling neutron spin echo measurements with molecular dynamics simulations, carried out to times typical of relaxation of polymers in solutions. The experimental dynamic structure factor is in outstanding agreement with the one calculated from computer simulations, as the networks are perturbed by elevating the temperature and changing the electrostatic environment. In toluene, the long-lived clusters remain stable over hundreds of ns across a broad temperature range, while the polymer network remains dynamic. Though the size of the clusters changes as the dielectric constant of the solvent is modified through the addition of ethanol, they remain stable but morph, enhancing the polymer chain dynamics.

More Details

Uncertainty quantification and propagation in lithium-ion battery electrodes using bayesian convolutional neural networks

Energy Storage Materials

Norris, Chance A.; Ayyaswamy, Abhinand; Vishnugopi, Bairav S.; Martinez, Carianne M.; Roberts, Scott A.; Mukherjee, Partha P.

The complex nature of manufacturing processes stipulates electrodes to possess high variability with increased heterogeneity during production. X-ray computed tomography imaging has proved to be critical in visualizing the complicated stochastic particle distribution of as-manufactured electrodes in lithium-ion batteries. However, accurate prediction of their electrochemical performance necessitates precise evaluation of kinetic and transport properties from real electrodes. Image segmentation that characterizes voxels to particle/pore phase is often meticulous and fraught with subjectivity owing to a myriad of unconstrained choices and filter algorithms. We utilize a Bayesian convolutional neural network to tackle segmentation subjectivity and quantify its pertinent uncertainties. Otsu inter-variance and Blind/Referenceless Imaging Spatial Quality Evaluator are used to assess the relative image quality of grayscale tomograms, thus evaluating the uncertainty in the derived microstructural attributes. We analyze how image uncertainty is correlated with the uncertainties and magnitude of kinetic and transport properties of an electrode, further identifying pathways of uncertainty propagation within microstructural attributes. The coupled effect of spatial heterogeneity and microstructural anisotropy on the uncertainty quantification of transport parameters is also understood. This work demonstrates a novel methodology to extract microstructural descriptors from real electrode images through quantification of associated uncertainties and discerning the relative strength of their propagation, thus facilitating feedback to manufacturing processes from accurate image based electrochemical simulations.

More Details

An Accurate and Automated Convective Vortex Detection Method for Long-Duration Infrasound Microbarometer Data

Journal of Atmospheric and Oceanic Technology

Berg, Elizabeth M.; Urtecho, Louis J.; Krishnamoorthy, Siddharth; Silber, Elizabeth A.; Sparks, Andrew; Bowman, Daniel B.

Heating of the surficial layer of the atmosphere often generates convective vortices, known as “dust devils” when they entrain visible debris. Convective vortices are common on both Earth and Mars, where they affect the climate via dust loading, contribute to wind erosion, impact the efficiency of photovoltaic systems, and potentially result in injury and property damage. However, long-duration terrestrial convective vortex activity records are rare. We have developed a high-precision and high-recall method to extract convective vortex signatures from infrasound microbarometer data streams. The techniques utilizes a wavelet-based detector to capture potential events and then a template matching system to extract the duration of the vortex. Since permanent and temporary infrasound sensors networks are present throughout the globe (many with open data), our method unlocks a vast new convective vortex dataset without requiring the deployment of specialized instrumentation. SIGNIFICANCE STATEMENT: Convective vortices, or “dust devils,” contribute to regional dust loading in Earth’s atmosphere. However, long-duration convective vortex activity records are rare. We came up with a way to autonomously detect the pressure signatures left by convective vortices striking low-frequency sound, or “infrasound,” sensors. Since permanent infrasound stations have been active for decades, our method has the potential to add ordersof-magnitude more events than previously catalogued.

More Details

Ground Heat Flux Reconstruction Using Bayesian Uncertainty Quantification Machinery and Surrogate Modeling

Earth and Space Science

Zhou, Wenbo; Zhang, Liujing; Sheshukov, Aleksey; Wang, Jingfeng; Zhu, Modi; Sargsyan, Khachik S.; Xu, Donghui; Liu, Desheng; Zhang, Tianqi; Mazepa, Valeriy; Sokolov, Alexandr; Valdayskikh, Victor; Ivanov, Valeriy

Ground heat flux (G0) is a key component of the land-surface energy balance of high-latitude regions. Despite its crucial role in controlling permafrost degradation due to global warming, G0 is sparsely measured and not well represented in the outputs of global scale model simulation. In this study, an analytical heat transfer model is tested to reconstruct G0 across seasons using soil temperature series from field measurements, Global Climate Model, and climate reanalysis outputs. The probability density functions of ground heat flux and of model parameters are inferred using available G0 data (measured or modeled) for snow-free period as a reference. When observed G0 is not available, a numerical model is applied using estimates of surface heat flux (dependent on parameters) as the top boundary condition. These estimates (and thus the corresponding parameters) are verified by comparing the distributions of simulated and measured soil temperature at several depths. Aided by state-of-the-art uncertainty quantification methods, the developed G0 reconstruction approach provides novel means for assessing the probabilistic structure of the ground heat flux for regional permafrost change studies.

More Details

Investigation of an Intermittent Binary Control Strategy for Distributed Aerodynamic Control Devices for Load Alleviation in Wind Turbine Blades

Anderson, Evan M.; Motes, Austin G.; Sproul, Evan G.; Mertz, Ben; Paquette, Joshua P.

A study was conducted of an intermittent binary control strategy for trailing edge flaps and leading edge spoilers installed on wind turbine blades for the purpose of load alleviation. Cost estimation models were developed for the systems to predict overall impact on levelized cost of energy over the lifecycle of the turbine system. Aeroelastic simulations of turbines with the control strategy implemented showed improved levelized cost for some, but not all cases.

More Details

PDMATLAB2D: A Peridynamics MATLAB Two-dimensional Code

Journal of Peridynamics and Nonlocal Modeling

Seleson, Pablo; Pasetto, Marco; John, Yohan; Trageser, Jeremy T.; Reeve, Samuel T.

PDMATLAB2D is a meshfree peridynamics implementation in MATLAB suitable for simulation of two-dimensional fracture problems. The purpose of this code is twofold. First, it provides an entry-level peridynamics computational tool for educational and training purposes. Second, it serves as an accessible and easily modifiable computational tool for peridynamics researchers who would like to adapt the code for a multitude of peridynamics simulation scenarios. The current version of the code implements a bond-based brittle elastic peridynamic model and a critical stretch criterion for bond breaking. However, the code is designed to be extendable for other peridynamic models and computational features. In this paper, we provide an overview of the code structure and functions with illustrative examples. Due to the integrated computation and postprocessing MATLAB capabilities, PDMATLAB2D can serve as an effective testbed for testing new constitutive models and advanced numerical features for peridynamics computations.

More Details

A Review of Parameter Ranges for Uncertainty Estimation for Decomposing Carbon Fiber Epoxy Composites

Scott, Sarah N.

Carbon fiber epoxy composites are increasingly used in systems requiring a material that is both strong and light weight, as in airplanes, cars, and pressure vessels. In fire environments, carbon fiber epoxy composites are a fuel source subject to oxidation. This literature review seeks to provide material properties as well as uncertainty bounds for those properties for computational models of decomposing carbon fiber epoxy composites. The goal is to guide analysts when measurements are lacking

More Details

Neutron source reconstruction using a generalized expectation-maximization algorithm on one-dimensional neutron images from the Z facility

Review of Scientific Instruments

Ricketts, Sidney A.; Mangan, Michael M.; Mannion, Owen M.; Laros, James H.; Ampleford, David A.; Volegov, P.; Fittinghoff, D.N.; Adams, M.L.; Morel, J.E.

Magnetized Liner Inertial Fusion experiments have been performed at the Z facility at Sandia National Laboratories. These experiments use deuterium fuel, which produces 2.45 MeV neutrons on reaching thermonuclear conditions. To study the spatial structure of neutron production, the one-dimensional imager of neutrons diagnostic was fielded to record axial resolved neutron images. In this diagnostic, neutrons passing through a rolled edge aperture form an image on a CR-39-based solid state nuclear track detector. Here, we present a modified generalized expectation-maximization algorithm to reconstruct an axial neutron emission profile of the stagnated fusion plasma. We validate the approach by comparing the reconstructed neutron emission profile to an x-ray emission profile provided by a time-integrated pinhole camera.

More Details

Large-scale harmonic balance simulations with Krylov subspace and preconditioner recycling

Nonlinear Dynamics

Kuether, Robert J.; Steyer, Andrew S.

The multi-harmonic balance method combined with numerical continuation provides an efficient framework to compute a family of time-periodic solutions, or response curves, for large-scale, nonlinear mechanical systems. The predictor and corrector steps repeatedly solve a sequence of linear systems that scale by the model size and number of harmonics in the assumed Fourier series approximation. In this paper, a novel Newton–Krylov iterative method is embedded within the multi-harmonic balance and continuation algorithm to efficiently compute the approximate solutions from the sequence of linear systems that arise during the prediction and correction steps. The method recycles, or reuses, both the preconditioner and the Krylov subspace generated by previous linear systems in the solution sequence. A delayed frequency preconditioner refactorizes the preconditioner only when the performance of the iterative solver deteriorates. The GCRO-DR iterative solver recycles a subset of harmonic Ritz vectors to initialize the solution subspace for the next linear system in the sequence. The performance of the iterative solver is demonstrated on two exemplars with contact-type nonlinearities and benchmarked against a direct solver with traditional Newton–Raphson iterations.

More Details

The Peridigm Meshfree Peridynamics Code

Journal of Peridynamics and Nonlocal Modeling

Littlewood, David J.; Parks, Michael L.; Foster, John T.; Mitchell, John A.; Diehl, Patrick

Peridigm is a meshfree peridynamics code written in C++ for use on large-scale parallel computers. It was originally developed at Sandia National Laboratories and is currently managed as an open-source, community driven software project. Its primary features include bond-based, state-based, and non-ordinary state-based constitutive models, bond failure laws, contact, and support for explicit and implicit time integration. To date, Peridigm has been used primarily by methods developers focused on solid mechanics and material failure. Peridigm utilizes foundational software components from Sandia’s Trilinos project and was designed for extensibility. This paper provides an overview of the solution methods implemented in Peridigm, a discussion of its software infrastructure, and demonstrates the use of Peridigm for the solution of several example problems.

More Details

Shaded fraction and backtracking in single-axis trackers on rolling terrain

Journal of Renewable and Sustainable Energy

Anderson, Kevin; Jensen, Adam R.

A generalized closed-form equation for the shaded collector fraction in solar arrays on rolling or undulating terrain is provided for single-axis tracking and fixed-tilt systems. The equation accounts for different rotation angles between the shaded and shading trackers, cross-axis slope between the two trackers, and offset between the collector plane and axis of rotation. The validity of the equation is demonstrated through comparison with numerical ray-tracing simulations and remaining minor sources of error are quantified. Additionally, a simple procedure to determine backtracking rotations for each row in an array installed on the rolling terrain (varying in the direction perpendicular to the tracker axes) is provided. The backtracking equation accounts for a desired shaded fraction (including complete shade avoidance) as well as an axis-collector offset. Test cases are provided to facilitate implementation of these equations.

More Details

Impact of high-power impulse magnetron sputtering pulse width on the nucleation, crystallization, microstructure, and ferroelectric properties of hafnium oxide thin films

Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films

Jaszewski, Samantha T.; Fields, Shelby S.; Chung, Ching C.; Jones, Jacob L.; Orson, Keithen G.; Reinke, Petra; Ihlefeld, Jon F.

The impact of the high-power impulse magnetron sputtering (HiPIMS) pulse width on the crystallization, microstructure, and ferroelectric properties of undoped HfO2 films is investigated. HfO2 films were sputtered from a hafnium metal target in an Ar/O2 atmosphere, varying the instantaneous power density by changing the HiPIMS pulse width with fixed time-averaged power and pulse frequency. The pulse width is shown to affect the ion-to-neutral ratio in the depositing species with the shortest pulse durations leading to the highest ion fraction. In situ x-ray diffraction measurements during crystallization demonstrate that the HiPIMS pulse width impacts nucleation and phase formation, with an intermediate pulse width of 110 μs stabilizing the ferroelectric phase over the widest temperature range. Although the pulse width impacts the grain size with the lowest pulse width resulting in the largest grain size, the grain size does not strongly correlate with the phase content or ferroelectric behavior in these films. These results suggest that precise control over the energetics of the depositing species may be beneficial for forming the ferroelectric phase in this material.

More Details

Inelastic relaxation processes in amorphous sodium silicates

Journal of the American Ceramic Society

Rimsza, Jessica R.; Jones, Reese E.

During fracture amorphous oxides exhibit irreversible processes, including inelastic and nonrecoverable relaxation effects in the process zone surrounding the crack tip. Here, classical molecular dynamics simulations were used with a reactive forcefield to evaluate inelastic relaxation processes in five amorphous sodium silicate compositions. Overall, the 20% Na2O-SiO2(NS20) composition exhibited the most inelastic relaxation, followed by the 15% Na2O-SiO2(NS15) composition, the 25% Na2O-SiO2(NS25) composition, and finally the 10% (NS10) and 30% (NS30) Na2O-SiO2 compositions. Coordination analysis of the Na+ ions identified that during inelastic relaxation the Na+ ions were increasingly coordinated by nonbridging oxygens (NBOs) for the NS10 and NS15 compositions, which was supported by radial analysis of the O-Na-O bond angles surrounding the crack tip. Across the sodium silicate compositional range, two different inelastic relaxation mechanism were identified based on the amount of bridging oxygens (BOs) and NBOs in the Na+ ion coordination shell. At lower (NS10) and higher (NS30) sodium compositions, the entire structured relaxed toward the crack tip. In contrast at intermediate sodium concentrations (NS20) the Na+ ion migrates toward the crack tip separately from the network structure. By developing a fundamental understanding of how modified silica systems respond to static stress fields, we will be able to predict how varying amorphous silicate systems exhibit slow crack growth.

More Details

Structural and Spectroscopic Properties of Butanediol-Modified Boehmite Materials

Journal of Physical Chemistry C

Greathouse, Jeffery A.; Weck, Philippe F.; Bell, Nelson S.; Kruichak, Jessica N.; Matteo, Edward N.

Glycoboehmite (GB) materials are synthesized by a solvothermal reaction to form layered aluminum oxyhydroxide (boehmite) modified by intercalated butanediol molecules. These hybrid materials offer a platform to design materials with potentially novel sorption, wetting, and catalytic properties. Several synthetic methods have been used, resulting in different structural and spectroscopic properties, but atomistic detail is needed to determine the interlayer structure to explore the synthetic control of GB materials. Here, we use classical molecular dynamics (MD) simulations to compare the structural properties of GB interlayers containing chemisorbed butanediol molecules as a function of diol loading. Accompanying quantum (density functional theory, DFT) static calculations and MD simulations are used to validate the classical model and compute the infrared spectra of various models. Classical MD results reveal the existence of two unique interlayer environments at higher butanediol loading, corresponding to smaller (cross-linked) and expanded interlayers. DFT-computed infrared spectra reveal the sensitivity of the aluminol O-H stretch frequencies to the interlayer environment, consistent with the spectrum of the synthesized material. Insight from these simulations will aid in the characterization of the newly synthesized GB materials.

More Details

The Effect of Grain Boundary Facet Junctions on Segregation and Embrittlement

Acta Materialia

Dingreville, Remi P.; Medlin, Douglas L.; Spearot, Douglas E.; Fernandez, Miguel E.

Junctions are discontinuities in flat grain boundaries that arise in all polycrystalline materials and are thought to play important roles in the response of a grain boundary network to thermal and mechanical loads. A key open question concerns the mechanisms by which solute segregation to junctions impacts properties of the grain boundary. Here, in this work, we investigate the influence of grain boundary facet junctions on solute embrittlement, and we present an analytical model that uses the hydrostatic stress field contributed by dislocations at multiple junctions to describe these effects. Specifically, we study junctions between {112} facets of various lengths in Au $\langle111\rangle$ Σ3 tilt grain boundaries. Copper and silver solutes are employed to determine if the effect of junctions on solute segregation and embrittlement is dependent on size relative to the host. Combined, atomistic simulation data and the analytical model show that Cu and Ag have opposite segregation responses to junctions due to the sign of the hydrostatic stress field induced by junctions. However, a positive shift in the embrittling potency is computed near junctions regardless of solute type or the stress state of the segregation site. Hence, for the conditions studied, junctions consistently shift the energetic landscape towards embrittlement.

More Details

Optimal local truncation error method for 3-D elasticity interface problems

International Journal of Mechanical Sciences

Idesman, Alexander; Bishop, Joseph E.

The paper deals with a new effective numerical technique on unfitted Cartesian meshes for simulations of heterogeneous elastic materials. Here, we develop the optimal local truncation error method (OLTEM) with 27- point stencils (similar to those for linear finite elements) for the 3-D time-independent elasticity equations with irregular interfaces. Only displacement unknowns at each internal Cartesian grid point are used. The interface conditions are added to the expression for the local truncation error and do not change the width of the stencils. The unknown stencil coefficients are calculated by the minimization of the local truncation error of the stencil equations and yield the optimal second order of accuracy for OLTEM with the 27-point stencils on unfitted Cartesian meshes. A new post-processing procedure for accurate stress calculations has been developed. Similar to basic computations it uses OLTEM with the 27-point stencils and the elasticity equations. The post-processing procedure can be easily extended to unstructured meshes and can be independently used with existing numerical techniques (e.g., with finite elements). Numerical experiments show that at an accuracy of 0.1% for stresses, OLTEM with the new post-processing procedure significantly (by 105-109 times) reduces the number of degrees of freedom compared to linear finite elements. OLTEM with the 27-point stencils yields even more accurate results than high-order finite elements with wider stencils.

More Details

Clustering Effects on the Structure of Ionomer Solutions: A Combined SANS and Simulations Study

Macromolecules

Grest, Gary S.; Kosgallana, Chathurika; Senanayake, Manjula; Mohottalalage, Supun S.; Wijesinghe, Sidath; He, Lilin; Perahia, Dvora

Ionic assemblies, or clusters, determine the structure and dynamics of ionizable polymers and enable their many applications. Fundamental to attaining well-defined materials is controlling the balance between the van der Waals interactions that govern the backbone behavior and the forces that drive the formation of ionic clusters. Here, using small-angle neutron scattering and fully atomistic molecular dynamics simulations, the structure of a model ionomer, sulfonated polystyrene in toluene solutions, was investigated as the cluster cohesion was tweaked by the addition of ethanol. The static structure factor was measured by both techniques and correlated with the size of the ionic clusters as the polymer concentration was varied. The conjunction of SANS results and molecular insight from MD simulations enabled the determination of the structure of these inhomogeneous networks on multiple length scales. We find that across the entire concentration range studied, a network driven by the formation of ionic clusters was formed, where the size of the clusters drives the inhomogeneity of these systems. Tweaking the ionic clusters through the addition of ethanol impacts the packing of the sulfonated groups, their shape, and their size distribution, which, in turn, affects the structure of these networks.

More Details

Label-Free, Noninvasive Bone Cell Classification by Hyperspectral Confocal Raman Microscopy

Chemical and Biomedical Imaging

Hayes, Dulce C.; McDonald, Anthony E.; Pattison, Kalista B.; Butler, Kimberly B.; Timlin, Jerilyn A.; Piontkowski, Zachary T.

Characterizing and identifying cells in multicellular in vitro models remain a substantial challenge. Here, we utilize hyperspectral confocal Raman microscopy and principal component analysis coupled with linear discriminant analysis to form a label-free, noninvasive approach for classifying bone cells and osteosarcoma cells. Through the development of a library of hyperspectral Raman images of the K7M2-wt osteosarcoma cell lines, 7F2 osteoblast cell lines, RAW 264.7 macrophage cell line, and osteoclasts induced from RAW 264.7 macrophages, we built a linear discriminant model capable of correctly identifying each of these cell types. The model was cross-validated using a k-fold cross validation scheme. The results show a minimum of 72% accuracy in predicting cell type. We also utilize the model to reconstruct the spectra of K7M2 and 7F2 to determine whether osteosarcoma cancer cells and normal osteoblasts have any prominent differences that can be captured by Raman. We find that the main differences between these two cell types are the prominence of the β-sheet protein secondary structure in K7M2 versus the α-helix protein secondary structure in 7F2. Additionally, differences in the CH2 deformation Raman feature highlight that the membrane lipid structure is different between these cells, which may affect the overall signaling and functional contrasts. Overall, we show that hyperspectral confocal Raman microscopy can serve as an effective tool for label-free, nondestructive cellular classification and that the spectral reconstructions can be used to gain deeper insight into the differences that drive different functional outcomes of different cells.

More Details

Phase-Slip Lines and Anomalous Josephson Effects in Tungsten Nanoscale Cluster-Based Topological Insulator Nanobridges: Implications for Topologically Protected Qubits and Quantum Sensors

ACS Applied Nano Materials

Qu, Dong X.; Cuozzo, Joseph J.; Teslich, Nick E.; Ray, Keith G.; Dai, Zurong; Li, Tian T.; Chapline, George F.; Dubois, Jonathan L.; Rossi, Enrico

Superconducting topological systems formed by a strong 3D topological insulator (TI) in proximity to a conventional s-wave superconductor (SC) have been intensely studied, as they may host Majorana zero modes. However, there are limited experimental realizations of TI-SC systems in which robust superconducting pairing is induced on the surface states of the TI and a topological superconducting state is established. Here, we fabricate a TI-SC system by depositing, via a focused ion beam, tungsten (W) nanoscale clusters on the surface of TI Bi0.91Sb0.09. We find that the resulting heterostructure supports phase-slip lines (PSLs) that act as effective Josephson junctions (JJs). We probe the response of the system to microwave radiation. We find that for some ac frequencies, and powers, the resulting Shapiro steps’ structure of the voltage-current characteristic exhibits a missing first step and an unexpectedly wide second Shapiro step. The theoretical analysis of the measurements shows that the unusual Shapiro response arises from the interplay between a static JJ and a dynamic one and allows us to identify the conditions under which the missing first step can be attributed to the topological nature of the JJs formed by the PSLs. Our results suggest an approach to induce superconductivity in a TI, a route to realizing highly transparent topological JJs, and show how the response of superconducting systems to microwave radiation can be used to infer the dynamics of PSLs. Highly transparent topological junctions are promising candidates to realize vector field sensors with very high sensitivity. In addition, due to the nontrivial Berry phase of the TI’s surface states such junctions can be in a topological state which is ideal to create topologically protected qubits.

More Details
Results 201–225 of 96,771
Results 201–225 of 96,771