Publications

20 Results

Search results

Jump to search filters

CPAP Ventilators Needed for Rapid Response to COVID-19 by Modification of CPAP Equipment

Haggerty, Ryan P.; Cook, Adam W.; Copeland, Robert G.; Esfahani, Susan S.; Finnegan, Patrick S.; Fuller, Nathan F.; Koplow, Jeffrey P.; Schoeniger, Joseph S.; Hinchcliffe, Jason C.; Reese, Troy; Wood, Steven L.; Lynch, Jeffrey J.; Glen, Andrew G.; Cahill, Jesse L.; Martinez-Sanchez, Andres M.; Sinclair, Michael B.; Gallegos, Michael A.; Carney, James P.; Ho, David H.; Higa, Derrick F.A.; Reinholtz, William; Arrowsmith, Marie D.

Early on in the COVID-19 pandemic, potential ventilator shortages were a critical issue identified by national health care providers. Capacity modeling at the time suggested patient demand may exceed ventilator supply. Thus, the challenge became finding an urgent interim solution to meet health care needs. Our initial hypothesis was that CPAP technology could be modified to provide similar functionality to a ventilator, relieving demand and allowing physicians to decide which patients need high end machines, ultimately saving lives. In conjunction with medical experts and pulmonologists, we were able to identify three key thrusts associated with this research problem: (1) modification of CPAP technology to allow for 02 input that would be capable of providing ventilation; (2) development of an alarming function that would provide real-time audible alarms to alert medical personnel to critical conditions, which would be used inline with CPAP technology; and (3) a method of sterilizing expiratory air from such a system in order to protect medical personnel from biohazard, since CPAPs vent to the atmosphere. We were unable to realize results for thrust 1 (CPAP modification for 02); we identified potential safety issues associated with utilizing medical grade oxygen with a common CPAP device. In order to characterize and mitigate these issues, we would need to partner closely with a device manufacturer; such a partnership could not be achieved in the timeframe needed for this rapid response work. However, we determined that some medical grade BiPAP devices do not need this modification and that the significant progress on thrusts 2 and 3 would be sufficient to buy down risk of a massive ventilator shortage. Our team built a prototype alarm system that can be utilized with any assistive respiratory device to alert on all key conditions identified by medical personnel (high pressure, low pressure, apnea, loss of power, low battery). Finally, our team made significant progress in the rapid prototyping and demonstration of an inline UV air purifier device. The device is cost efficient and can be manufactured at scale with both commercially available and additively manufactured parts. Initial tests with SARS-CoV-2 analog bacteriophage MS2 show 99% efficacy at reducing bioburden. Following a successful demonstration of the prototype device with medical personnel, we were able to obtain follow-on (non-LDRD) funding to provide additional device characterization, validation, and production in order to respond to an immediate regional need.

More Details

Best Paper Award: Gathering Threat Intelligence Through Computer Network Deception

Arrowsmith, Marie D.

Presented at the 2016 IEEE International Symposium on Technologies for Homeland Security (HST), this LDRD-funded research received a Best Paper award, the highest award presented at the conference. The research focused on developing, implementing, and testing a novel computer network operations architecture that enables proactive defense by managing and monitoring enterprise resource allocations and network flows. The architecture leverages three emerging concepts: software-defined networks, cloud computing, and deception, to enable the detection and identification of anomalous access and intrusions to adjust to the dynamic nature of the adversary and to provide a mechanism to discover and react to the adversary’s attacks in a methodical and proactive manner. Additionally, the work allows network defenders to gather information on an adversary’s tools, tactics and procedures, providing insight into the “what, why, and how” of the adversary’s operations. A summary of the work presented at IEEE can be found at http://tiny.sandia.gov/8d8lu.

More Details

From Idea to Innovation: The Role of LDRD Investments in Sandia's Recent Successful B61 Experiments

Arrowsmith, Marie D.

The Laboratory Directed Research and Development (LDRD) program, authorized by U.S. Congress in 1991, enables Department of Energy (DOE) laboratories to devote a small portion of their research funding to high-risk and potentially high-payoff research. Because it is high-risk, LDRD-supported research may not lead to immediate mission impacts; however, many successes at DOE labs can be traced back to investments in LDRD. LDRD investments have a history of enabling significant payoffs for long-running DOE and NNSA missions and for providing anticipatory new technologies that ultimately become critical to future missions. Many of Sandia National Laboratories’ successes can be traced back to investments in LDRD. Capabilities from three LDRDs were critical to recent tests of the B61-12 gravity bomb—tests that would previously have only been performed experimentally.

More Details
20 Results
20 Results