Publications

Results 77551–77575 of 96,771

Search results

Jump to search filters

Thermodynamics of gaseous hydrogen and hydrogen transport in metals

Materials Research Society Symposium Proceedings

San Marchi, Christopher W.; Somerday, Brian P.

The thermodynamics and kinetics of hydrogen dissolved in structural metals is often not addressed when assessing phenomena associated with hydrogen-assisted fracture. Understanding the behavior of hydrogen atoms in a metal lattice, however, is important for interpreting materials properties measured in hydrogen environments, and for designing structurally efficient components with extended lifecycles. The assessment of equilibrium hydrogen contents and hydrogen transport in steels is motivated by questions raised in the safety, codes and standards community about mixtures of gases containing hydrogen as well as the effects of stress and hydrogen trapping on the transport of hydrogen in metals. More broadly, these questions are important for enabling a comprehensive understanding of hydrogen-assisted fracture. We start by providing a framework for understanding the thermodynamics of pure gaseous hydrogen and then we extend this to treat mixtures of gases containing hydrogen. An understanding of the thermodynamics of gas mixtures is necessary for analyzing concepts for transitioning to a hydrogen-based economy that incorporate the addition of gaseous hydrogen to existing energy carrier systems such as natural gas distribution. We show that, at equilibrium, a mixture of gases containing hydrogen will increase the fugacity of the hydrogen gas, but that this increase is small for practical systems and will generally be insufficient to substantially impact hydrogen-assisted fracture. Further, the effects of stress and hydrogen trapping on the transport of atomic hydrogen in metals are considered. Tensile stress increases the amount of hydrogen dissolved in a metal and slightly increases hydrogen diffusivity. In some materials, hydrogen trapping has very little impact on hydrogen content and transport, while other materials show orders of magnitude increases of hydrogen content and reductions of hydrogen diffusivity. © 2008 Materials Research Society.

More Details

Developing a laser-based ionization approach for detecting explosives with ion mobility spectrometry

Optics InfoBase Conference Papers

Headrick, Jeffrey M.; Reichardt, Thomas A.; Bambha, Ray B.; Kelley, Jude A.; Pfeifer, Kent B.; Bouchier, Francis A.

Rotationally resolved resonance-enhanced multiphoton ionization (REMPI) spectra of the NO photofragment from nitrobenzene have been observed for the A 2Σ+-X 2Π (1, 0) transition. These spectra were collected in an atmospheric-pressure nitrogen bath. © 2007 Optical Society of America.

More Details

High-speed switching of a 1.55-μm symmetric SEED

Optics InfoBase Conference Papers

Keeler, Gordon A.; Serkland, Darwin K.; Hsu, Alan Y.; Geib, K.M.; Overberg, Mark E.; Klem, John F.

We demonstrate high-speed switching of a symmetric self-electrooptic effect device (S-SEED) operating at 1550 nm. Transitions faster than 10 ps are observed, verifying the suitability of this technology for integrated logic operations beyond 40 GHz. © 2008 Optical Society of America.

More Details

Finite-difference modeling of 3D seismic wave propagation in high-contrast media

SEG Technical Program Expanded Abstracts

Preston, Leiph A.; Aldridge, David F.; Symons, Neill P.

Stable and accurate numerical modeling of seismic wave propagation in the vicinity of high-contrast interfaces is achieved with straightforward modifications to the conventional, rectangular-staggered-grid, finite-difference (FD) method. Improvements in material parameter averaging and spatial differencing of wavefield variables yield high-quality synthetic seismic data.

More Details

A study of node-based architectures for satellite systems

26th AIAA International Communications Satellite Systems Conference, ICSSC

Kalb, Jeffrey L.; Eldridge, John M.; Heine, David H.; Lee, David S.; Wertz, Jason W.

Packet switched data communication networks that use distributed processing architectures have the potential to simplify the design and development of new and increasingly sophisticated satellite payloads. Distributed network architectures can improve system reliability and capability and reduce size, weight, and power when compared to current architectures. This study performed a broad review of network characteristics and architectures for use on-board future satellite payloads. The concepts of topology selection, commercially available communication protocols, and architecture modeling and simulation were studied, and the results are presented in this paper. Copyright © 2008 by the American Institute of Aeronautics and Astronautics, Inc.

More Details

Integrated optical bio sensors

Optics InfoBase Conference Papers

Brener, Igal B.

We will present our recent progress on 1) waveguide-based sensor arrays that can operate as high density immunoassay sensors for detection of proteins and other biomolecules in solution, 2) metamaterial and plasmonic-based chem-bio sensors. © 2008 Optical Society of America.

More Details

A mesh optimization algorithm to decrease the maximum error in finite element computations

Proceedings of the 17th International Meshing Roundtable, IMR 2008

Hetmaniuk, U.; Knupp, Patrick K.

We present a mesh optimization algorithm for adaptively improving the finite element interpolation of a function of interest. The algorithm minimizes an objective function by swapping edges and moving nodes. Numerical experiments are performed on model problems. The results illustrate that the mesh optimization algorithm can reduce the W1,∞ semi-norm of the interpolation error. For these examples, the L2, L∞, and H1 norms decreased also.

More Details

Mesh matching - Creating conforming interfaces between hexahedral meshes

Proceedings of the 17th International Meshing Roundtable, IMR 2008

Staten, Matthew L.; Shepherd, Jason F.; Shimada, Kenji

This paper presents a new method for handling non-conforming hexahedralto- hexahedral interfaces. One or both of the adjacent hexahedralmeshes are locally modified to create a one-to-onemapping between between themesh nodes and quadrilaterals at the interface allowing a conforming mesh to be created. In the finite element method, non-conforming interfaces are currently handled using constraint conditions such as gapelements, tied contacts, or multi-point constraints. By creating a conforming mesh, the need for constraint conditions is eliminated resulting in a smoother, more precise numerical solution. The method presented in this paper uses hexahedral dual operations, including pillowing, sheet extraction, dicing and column collapse operations, to affect the local mesh modifications. In addition, an extension to pillowing, called sheet inflation, is introduced to handle the insertion of self-intersecting and self-touching sheets. The quality of the resultant conforming hexahedral mesh is high and the increase in number of elements is moderate.

More Details

Planar velocimetry of a fin trailing vortex in subsonic compressible flow

38th AIAA Fluid Dynamics Conference and Exhibit

Beresh, Steven J.; Henfling, John F.; Spillers, Russell W.

A sub-scale experiment has been conducted to study the trailing vortex shed from a tapered fin installed on a wind tunnel wall to represent missile configurations. Stereoscopic particle image velocimetry measurements have been acquired in the near-field for several locations downstream of the fin tip and at different fin angles of attack. The vortex's tangential velocity is found to decay with downstream distance while its radius increases, but the vortex core circulation remains constant. Circulation and tangential velocity rise greatly for increased fin angle of attack, but the radius is approximately constant or slightly decreasing. The vortex axial velocity is always a deficit, whose magnitude diminishes with downstream distance and smaller angle of attack. No variation with Mach number can be discerned in the normalized velocity data. Vortex roll-up is observed to be largely complete by about four root chord lengths downstream of the fin trailing edge. Prior to this point, the vortex is asymmetric in the tangential velocity but the core radius stays nearly constant. Vortical rotation draws low-speed turbulent fluid from the wind tunnel wall boundary layer into the vortex core, which appears to hasten vortex decay and produce a larger axial velocity deficit than might be expected. Self-similarity of the vortex is established even while it is still rolling up. Attempts to normalize vortex properties by the fin's lift coefficient proved unsuccessful.

More Details

Terascale direct numerical simulations of turbulent combustion - Fundamental understanding towards predictive models

Journal of Physics: Conference Series

Lignell, D.O.; Chen, J.H.; Richardson, E.S.

Advances in high-performance computational capabilities enable scientific simulations with increasingly realistic physical representations. This situation is especially true of turbulent combustion involving multiscale interactions between turbulent flow, complex chemical reaction, and scalar transport. A fundamental understanding of combustion processes is crucial to the development and optimization of next-generation combustion technologies operating with alternative fuels, at higher pressures, and under less stable operating conditions, such as highly dilute, stratified mixtures. Direct numerical simulations (DNS) of turbulent combustion resolving all flow and chemical features in canonical configurations are used to improve fundamental understanding of complex flow processes and to provide a database for the development and validation of combustion models. A description of the DNS solver and its optimization for use in massively parallel simulations is presented. Recent DNS results from a series of three combustion configurations are presented: soot formation and transport in a nonpremixed ethylene jet flame, the effect of fuel stratification in methane Bunsen flames, and extinction and reignition processes in nonpremixed ethylene jet flames. © 2008 IOP Publishing Ltd.

More Details

The influence of velocity gradients on PIV measurements of turbulence statistics: A preliminary study

26th AIAA Aerodynamic Measurement Technology and Ground Testing Conference

Beresh, Steven J.

Error in Particle Image Velocimetry (PIV) interrogation due to velocity gradients in turbulent flows was studied for both classical and advanced algorithms. Classical algorithms are considered to be digital cross-correlation analysis including discrete window offsets and, for the present work, advanced algorithms are those using image deformation to compensate for velocity gradients. Synthetic PIV simulations revealed substantial negative biases in the turbulent stress for classical algorithms even for velocity gradients within recommended PIV design limits. This bias worsens if the distribution of velocity gradients has a nonzero mean, and error in the mean velocity may be introduced as well. Conversely, advanced algorithms do not exhibit this bias error if the velocity gradients are linear. Nonlinear velocity gradients increase the error in classical algorithms and a significant negative bias in the turbulent stress arises for the advanced algorithm as well. Two experimental data sets showed substantially lower turbulent stresses for the classical algorithm compared with the advanced algorithm, as predicted. No new experimental design rules for advanced algorithms are yet proposed, but any such recommendation would concern second-order velocity derivatives rather than first order.

More Details

Selective extraction of recombinant proteins by multiple-affinity two-phase partitioning in microchannels

12th International Conference on Miniaturized Systems for Chemistry and Life Sciences - The Proceedings of MicroTAS 2008 Conference

Meagher, Robert M.; Light, Yooli K.; Singh, Anup K.

We have demonstrated purification of proteins in a simple aqueous two-phase extraction process in a microfluidic device. The laminar flows inherent to microchannels allows us to perform a binary split of a complex cell lysate sample, in an open channel with no chromatography support and no moving parts. This mild process allows recovery of functional proteins with a modest increase in purity. Aromatic-rich fusion tags are used to drive partitioning of enzymes in a generic PEG-salt two-phase system. Addition of affinity ligands to the PEG phase allows us to exploit other popular fusion tags, such as polyhistidine tags and GST-tags. © 2008 CBMS.

More Details

Precise microscale polymer gradients applied to isoelectric focusing and pore limit electrophoresis

12th International Conference on Miniaturized Systems for Chemistry and Life Sciences - The Proceedings of MicroTAS 2008 Conference

Sommer, G.J.; Singh, Anup K.; Hatch, Anson H.

We demonstrate the power of our technique for establishing and immobilizing well-defined polymer gradients in microchannels by fabricating two miniaturized analytical platforms: microscale immobilized pH gradients (μIPGs) for rapid and high resolution isoelectric focusing (IEF) applications, and polyacrylamide porosity gradients to achieve microscale pore limit electrophoresis (μPLE) in which species are separated based on molecular size by driving them toward the pore size at which migration ceases. Both separation techniques represent the first microscale implementation of their respective methodologies.

More Details

Simulations of water at the interface with hydrophilic self-assembled monolayers

Biointerphases

Stevens, Mark J.; Grest, Gary S.

Simulations of water at hydrophilic self-assembled monolayer (SAM) surfaces are especially relevant for biological interfaces. Well-defined, atomically smooth surfaces that can be continuously varied are possible with SAMs. These characteristics enable more accurate measurements than many other surfaces with the added advantage of tailoring the surface to treat specific chemical groups. A fundamental question is how solid surfaces affect the structure and dynamics of water. Measurements of the structure and dynamics of water at solid surfaces have improved significantly, but there remain differences among the experiments. In this article, the authors review simulations of water at the interface with hydrophilic SAMs. These simulations find that while the interfacial water molecules are slower than the bulk water molecules, the interfacial dynamics remains that of a liquid. A major biological application of SAMs is for making coatings resistant to protein adsorption. SAMs terminated with ethylene glycol monomers have proven to be excellent at resisting protein adsorption. Understanding the mechanisms behind this resistance remains an unresolved issue. Recent simulations suggest a new perspective of the role of interfacial water and the inseparable interplay between the SAM and the water. © 2008 American Vacuum Society.

More Details
Results 77551–77575 of 96,771
Results 77551–77575 of 96,771