Publications

Results 4326–4350 of 96,771

Search results

Jump to search filters

Modifications to Sandia's MDT and WNTR tools for ERMA

Eddy, John P.; Klise, Katherine A.; Hart, David B.

ERMA is leveraging Sandia’s Microgrid Design Toolkit (MDT) [1] and adding significant new features to it. Development of the MDT was primarily funded by the Department of Energy, Office of Electricity Microgrid Program with some significant support coming from the U.S. Marine Corps. The MDT is a software program that runs on a Microsoft Windows PC. It is an amalgamation of several other software capabilities developed at Sandia and subsequently specialized for the purpose of microgrid design. The software capabilities include the Technology Management Optimization (TMO) application for optimal trade-space exploration, the Microgrid Performance and Reliability Model (PRM) for simulation of microgrid operations, and the Microgrid Sizing Capability (MSC) for preliminary sizing studies of distributed energy resources in a microgrid.

More Details

BattPhase—A Convergent, Non-Oscillatory, Efficient Algorithm and Code for Predicting Shape Changes in Lithium Metal Batteries Using Phase-Field Models: Part I. Secondary Current Distribution

Journal of the Electrochemical Society

Jang, Taejin; Mishra, Lubhani; Roberts, Scott A.; Planden, Brady; Subramaniam, Akshay; Uppaluri, Maitri; Linder, David; Gururajan, Mogadalai P.; Zhang, Ji G.; Subramanian, Venkat R.

Electrochemical models at different scales and varying levels of complexity have been used in the literature to study the evolution of the anode surface in lithium metal batteries. This includes continuum, mesoscale (phase-field approaches), and multiscale models. Thermodynamics-based equations have been used to study phase changes in lithium batteries using phase-field approaches. However, grid convergence studies and the effect of additional parameters needed to simulate these models are not well-documented in the literature. In this paper, using a motivating example of a moving boundary model in one- and two-dimensions, we show how one can formulate phase-field models, implement algorithms for the same and analyze the results. An open-access code with no restrictions is provided as well. The article concludes with some thoughts on the computational efficiency of phase-field models for simulating dendritic growth.

More Details

Advances in phosphor two-color ratio method thermography for full-field surface temperature measurements

Measurement Science and Technology

Jones, Elizabeth M.; Jones, Amanda; Hoffmeister, Kathryn N.; Winters, Caroline W.

Thermographic phosphors can be employed for optical sensing of surface, gas phase, and bulk material temperatures through different strategies including the time-decay method, time-integrated method, and frequency-domain method. We focus on the time-integrated method, also known as the ratio method, as it can be more practical in many situations. This work advances the ratio method using two machine vision cameras with CMOS detectors for full-field temperature measurements of a solid surface. A phosphor calibration coupon is fabricated using aerosol deposition and employed for in situ determination of the temperature-versus-intensity ratio relationship. Algorithms from digital image correlation are employed to determine the stereoscopic imaging system intrinsic and extrinsic parameters, and accurately register material points on the sample to subpixel locations in each image with 0.07 px or better accuracy. Detector nonlinearity is carefully characterized and corrected. Temperature-dependent, spatial non-uniformity of the full-field intensity ratio-posited to be caused by a blue-shift effect of the bandpass filter for non-collimated light and/or a wavelength-dependent transmission efficiency of the lens-is assessed and treated for cases where a standard flat-field correction fails to correct the non-uniformity. In sum, pixel-wise calibration curves relating the computed intensity ratio to temperature in the range of T = 300-430 K are generated, with an embedded error of less than 3 K. This work offers a full calibration methodology and several improvements on two-color phosphor thermography, opening the door for full-field temperature measurements in dynamic tests with deforming test articles.

More Details
Results 4326–4350 of 96,771
Results 4326–4350 of 96,771