Myla D. Worthington - Sandia National Laboratories
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Journal of Advances in Modeling Earth Systems
For decades, Arctic temperatures have increased twice as fast as average global temperatures. As a first step toward quantifying parametric uncertainty in Arctic climate, we performed a variance-based global sensitivity analysis (GSA) using a fully coupled, ultra-low resolution (ULR) configuration of version 1 of the U.S. Department of Energy's Energy Exascale Earth System Model (E3SMv1). Specifically, we quantified the sensitivity of six quantities of interests (QOIs), which characterize changes in Arctic climate over a 75 year period, to uncertainties in nine model parameters spanning the sea ice, atmosphere, and ocean components of E3SMv1. Sensitivity indices for each QOI were computed with a Gaussian process emulator using 139 random realizations of the random parameters and fixed preindustrial forcing. Uncertainties in the atmospheric parameters in the Cloud Layers Unified by Binormals (CLUBB) scheme were found to have the most impact on sea ice status and the larger Arctic climate. Our results demonstrate the importance of conducting sensitivity analyses with fully coupled climate models. The ULR configuration makes such studies computationally feasible today due to its low computational cost. When advances in computational power and modeling algorithms enable the tractable use of higher-resolution models, our results will provide a baseline that can quantify the impact of model resolution on the accuracy of sensitivity indices. Moreover, the confidence intervals provided by our study, which we used to quantify the impact of the number of model evaluations on the accuracy of sensitivity estimates, have the potential to inform the computational resources needed for future sensitivity studies.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Numerical Linear Algebra with Applications
We present a polynomial preconditioner for solving large systems of linear equations. The polynomial is derived from the minimum residual polynomial (the GMRES polynomial) and is more straightforward to compute and implement than many previous polynomial preconditioners. Our current implementation of this polynomial using its roots is naturally more stable than previous methods of computing the same polynomial. We implement further stability control using added roots, and this allows for high degree polynomials. We discuss the effectiveness and challenges of root-adding and give an additional check for stability. In this article, we study the polynomial preconditioner applied to GMRES; however it could be used with any Krylov solver. This polynomial preconditioning algorithm can dramatically improve convergence for some problems, especially for difficult problems, and can reduce dot products by an even greater margin.
Abstract not provided.
The D-value or dangerous quantity system was designed by the International Commission for Radiological Protection for the determination of source protection categories that can be used to reduce the likelihood of accidents, the consequences of which could result in harm to individuals or costly or expensive cleanup. The process includes multiple scenarios for exposure and two different approaches to the evaluation of detriment. This document provides an example calculation using 137Cs to walk through the complex process of determining its D-value in the hopes of making the process easily understandable.
The Spent Fuel & Waste Science and Technology (SFWST) Campaign of the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE), Office of Spent Fuel & Waste Disposition (SFWD) is conducting research and development (R&D) on geologic disposal of spent nuclear fuel (SNF) and high-level nuclear waste (HLW). A high priority for SFWST disposal R&D is to develop a disposal system modeling and analysis capability for evaluating disposal system performance for nuclear waste in geologic media. This report describes fiscal year (FY) 2022 accomplishments by the PFLOTRAN Development group of the SFWST Campaign. The mission of this group is to develop a geologic disposal system modeling capability for nuclear waste that can be used to probabilistically assess the performance of generic disposal concepts. In FY 2022, the PFLOTRAN development team made several advancements to our software infrastructure, code performance, and process modeling capabilities.
Abstract not provided.
Abstract not provided.
Abstract not provided.