Publications

Results 2526–2550 of 96,771

Search results

Jump to search filters

Investigating the Potential of Electrical Connection Chatter Induced by Structural Dynamics

Conference Proceedings of the Society for Experimental Mechanics Series

Dankesreiter, Benjamin; Serrano, Manuel; Zhang, Jonathan; Pacini, Benjamin R.; Walczak, Karl A.; Flicek, Robert C.; Johnson, Kelsey M.; Zastrow, Ben

When exposed to mechanical environments such as shock and vibration, electrical connections may experience increased levels of contact resistance associated with the physical characteristics of the electrical interface. A phenomenon known as electrical chatter occurs when these vibrations are large enough to interrupt the electric signals. It is critical to understand the root causes behind these events because electrical chatter may result in unexpected performance or failure of the system. The root causes span a variety of fields, such as structural dynamics, contact mechanics, and tribology. Therefore, a wide range of analyses are required to fully explore the physical phenomenon. This paper intends to provide a better understanding of the relationship between structural dynamics and electrical chatter events. Specifically, electrical contact assembly composed of a cylindrical pin and bifurcated structure were studied using high fidelity simulations. Structural dynamic simulations will be performed with both linear and nonlinear reduced-order models (ROM) to replicate the relevant structural dynamics. Subsequent multi-physics simulations will be discussed to relate the contact mechanics associated with the dynamic interactions between the pin and receptacle to the chatter. Each simulation method was parametrized by data from a variety of dynamic experiments. Both structural dynamics and electrical continuity were observed in both the simulation and experimental approaches, so that the relationship between the two can be established.

More Details

Wall-Modeled Large-Eddy Simulation of Turbulent Mach 14 Boundary Layer for Aero-Optical Analysis

AIAA SciTech Forum and Exposition, 2023

Miller, Nathan M.; Lynch, Kyle P.; Guildenbecher, Daniel R.

A wall-modeled large-eddy simulation of a Mach 14 boundary layer flow over a flat plate was carried out for the conditions of the Arnold Engineering Development Complex Hypervelocity Tunnel 9. Adequate agreement of the mean velocity and temperature, as well as Reynolds stress profiles with a reference direct numerical simulation is obtained at much reduced grid resolution. The normalized root-mean-square optical path difference obtained from the present wall-modeled large-eddy simulations and reference direct nu- merical simulation are in good agreement with each other but below a prediction obtained from a semi-analytical relationship by Notre Dame University. This motivates an evalua- tion of the underlying assumptions of the Notre Dame model at high Mach number. For the analysis, recourse is taken to previously published wall-modeled large-eddy simulations of a Mach eight turbulent boundary layer. The analysis of the underlying assumptions focuses on the root-mean-square fluctuations of the thermodynamic quantities, on the strong Reynolds analogy, two-point correlations, and the linking equation. It is found that with increasing Mach number, the pressure fluctuations increase and the strong Reynolds anal- ogy over-predicts the temperature fluctuations. In addition, the peak of the correlation length shifts towards the boundary layer edge.

More Details

Design and Analysis of Hydromine for Harvesting Energy from Ocean Currents with No External Moving Parts

OCEANS 2023 - Limerick, OCEANS Limerick 2023

Houchens, Brent C.; deVelder, Nathaniel d.; Krath, Elizabeth H.; Lewis, James M.; Sproul, Evan G.; Udoh, Ikpoto E.; Westergaard, Carsten H.

The novel Hydromine harvests energy from flowing water with no external moving parts, resulting in a robust system with minimal environmental impact. Here two deployment scenarios are considered: an offshore floating platform configuration to capture energy from relatively steady ocean currents at megawatt-scale, and a river-based system at kilowatt-scale mounted on a pylon. Hydrodynamic and techno-economic models are developed. The hydrodynamic models are used to maximize the efficiency of the power conversion. The techno-economic models optimize the system size and layout and ultimately seek to minimize the levelized-cost-of-electricity produced. Parametric and sensitivity analyses are performed on the models to optimize performance and reduce costs.

More Details

CONTROLS AND OPERATIONAL STRATEGY FOR GEN 3 PARTICLE PILOT PLANT

Proceedings of ASME 2023 17th International Conference on Energy Sustainability, ES 2023

Laubscher, Hendrik F.; Garcia Maldonado, Luis G.; Alvarez, Francisco; Mclaughlin, Luke; Schroeder, Nathan; Albrecht, Kevin J.; Sment, Jeremy N.; Plewe, Kaden

A comprehensive control strategy is necessary to safely and effectively operate particle based concentrating solar power (CSP) technologies. Particle based CSP with thermal energy storage (TES) is an emerging technology with potential to decarbonize power and process heat applications. The high-temperature nature of particle based CSP technologies and daily solar transients present challenges for system control to prevent equipment damage and ensure operator safety. An operational controls strategy for a tower based particle CSP system during steady state and transient conditions with safety interlocks is described in this paper. Control of a solar heated particle recirculation loop, TES, and a supercritical carbon dioxide (sCO2) cooling loop designed to reject 1 MW of thermal power are considered and associated operational limitations and their influence on control strategy are discussed.

More Details

Thin-Film Lithium Niobate Electro-Optic Modulators with Integrated Silicon Photonic Thermo-Optic Phase Shifters

CLEO: Science and Innovations, CLEO:S and I 2023

Boynton, Nicholas; Friedmann, Thomas A.; Arterburn, Shawn C.; Musick, Katherine M.; Boady, Matthew S.; Starbuck, Andrew L.; Trotter, Douglas C.; Pomerene, Andrew P.; Kodigala, Ashok; Lentine, Anthony L.; Morton, Paul A.; Gehl, M.

TFLN/silicon photonic modulators featuring active silicon photonic components are reported with a Vπ of 3.6 Vcm. This hybrid architecture utilizes the bottom of the buried oxide as the bonding surface which features minimum topology.

More Details

A Solid State Transformer for Electric Power Grid HEMP/GMD Mitigation

2023 IEEE 24th Workshop on Control and Modeling for Power Electronics, COMPEL 2023

Donnelly, Timothy; Rashkin, Lee

A high altitude electromagnetic pulse (HEMP) or other similar geomagnetic disturbance (GMD) has the potential to severely impact the operation of large-scale electric power grids. By introducing low-frequency common-mode (CM) currents, these events can impact the performance of key system components such as large power transformers. In this work, a solid-state transformer (SST) that can replace susceptible equipment and improve grid resiliency by safely absorbing these CM insults is described. An overview of the proposed SST power electronics and controls architecture is provided, a system model is developed, and the performance of the SST in response to a simulated CM insult is evaluated. Compared to a conventional magnetic transformer, the SST is found to recover quickly from the insult while maintaining nominal ac input/output behavior.

More Details

An Assessment of the Laminar Hypersonic Double-Cone Experiments in the LENS-XX Tunnel

AIAA Journal

Ray, Jaideep R.; Blonigan, Patrick J.; Phipps, Eric T.; Maupin, Kathryn A.

This is an investigation on two experimental datasets of laminar hypersonic flows, over a double-cone geometry, acquired in Calspan—University at Buffalo Research Center’s Large Energy National Shock (LENS)-XX expansion tunnel. These datasets have yet to be modeled accurately. A previous paper suggested that this could partly be due to mis-specified inlet conditions. The authors of this paper solved a Bayesian inverse problem to infer the inlet conditions of the LENS-XX test section and found that in one case they lay outside the uncertainty bounds specified in the experimental dataset. However, the inference was performed using approximate surrogate models. In this paper, the experimental datasets are revisited and inversions for the tunnel test-section inlet conditions are performed with a Navier–Stokes simulator. The inversion is deterministic and can provide uncertainty bounds on the inlet conditions under a Gaussian assumption. It was found that deterministic inversion yields inlet conditions that do not agree with what was stated in the experiments. An a posteriori method is also presented to check the validity of the Gaussian assumption for the posterior distribution. This paper contributes to ongoing work on the assessment of datasets from challenging experiments conducted in extreme environments, where the experimental apparatus is pushed to the margins of its design and performance envelopes.

More Details

Quantifying the effect of CO2 gasification on pulverized coal char oxy-fuel combustion

Proceedings of the Combustion Institute

Shaddix, Christopher R.; Hecht, Ethan S.; Gonzalo-Tirado, Cristina; Haynes, Brian S.

Previous research has provided strong evidence that CO2 and H2O gasification reactions can provide non-negligible contributions to the consumption rates of pulverized coal (pc) char during combustion, particularly in oxy-fuel environments. Fully quantifying the contribution of these gasification reactions has proven to be difficult, due to the dearth of knowledge of gasification rates at the elevated particle temperatures associated with typical pc char combustion processes, as well as the complex interaction of oxidation and gasification reactions. Gasification reactions tend to become more important at higher char particle temperatures (because of their high activation energy) and they tend to reduce pc oxidation due to their endothermicity (i.e. cooling effect). The work reported here attempts to quantify the influence of the gasification reaction of CO2 in a rigorous manner by combining experimental measurements of the particle temperatures and consumption rates of size-classified pc char particles in tailored oxy-fuel environments with simulations from a detailed reacting porous particle model. The results demonstrate that a specific gasification reaction rate relative to the oxidation rate (within an accuracy of approximately +/- 20% of the pre-exponential value), is consistent with the experimentally measured char particle temperatures and burnout rates in oxy-fuel combustion environments. Conversely, the results also show, in agreement with past calculations, that it is extremely difficult to construct a set of kinetics that does not substantially overpredict particle temperature increase in strongly oxygen-enriched N2 environments. This latter result is believed to result from deficiencies in standard oxidation mechanisms that fail to account for falloff in char oxidation rates at high temperatures.

More Details

Quantum simulation of weak-field light-matter interactions

Physical Review Research

Young, Steve M.; Haffner, Hartmut; Sarovar, Mohan S.

Simulation of the interaction of light with matter, including at the few-photon level, is important for understanding the optical and optoelectronic properties of materials and for modeling next-generation nonlinear spectroscopies that use entangled light. At the few-photon level the quantum properties of the electromagnetic field must be accounted for with a quantized treatment of the field, and then such simulations quickly become intractable, especially if the matter subsystem must be modeled with a large number of degrees of freedom, as can be required to accurately capture many-body effects and quantum noise sources. Motivated by this we develop a quantum simulation framework for simulating such light-matter interactions on platforms with controllable bosonic degrees of freedom, such as vibrational modes in the trapped ion platform. The key innovation in our work is a scheme for simulating interactions with a continuum field using only a few discrete bosonic modes, which is enabled by a Green's function (response function) formalism. We develop the simulation approach, sketch how the simulation can be performed using trapped ions, and then illustrate the method with numerical examples. Our work expands the reach of quantum simulation to important light-matter interaction models and illustrates the advantages of extracting dynamical quantities such as response functions from quantum simulations.

More Details

ENABLING HYPER-DIFFERENTIAL SENSITIVITY ANALYSIS for ILL-POSED INVERSE PROBLEMS

SIAM Journal on Scientific Computing

Hart, Joseph L.; van Bloemen Waanders, Bart G.

Inverse problems constrained by partial differential equations (PDEs) play a critical role in model development and calibration. In many applications, there are multiple uncertain parameters in a model that must be estimated. However, high dimensionality of the parameters and computational complexity of the PDE solves make such problems challenging. A common approach is to reduce the dimension by fixing some parameters (which we will call auxiliary parameters) to a best estimate and use techniques from PDE-constrained optimization to estimate the other parameters. In this article, hyper-differential sensitivity analysis (HDSA) is used to assess the sensitivity of the solution of the PDE-constrained optimization problem to changes in the auxiliary parameters. Foundational assumptions for HDSA require satisfaction of the optimality conditions which are not always practically feasible as a result of ill-posedness in the inverse problem. We introduce novel theoretical and computational approaches to justify and enable HDSA for ill-posed inverse problems by projecting the sensitivities on likelihood informed subspaces and defining a posteriori updates. Our proposed framework is demonstrated on a nonlinear multiphysics inverse problem motivated by estimation of spatially heterogeneous material properties in the presence of spatially distributed parametric modeling uncertainties.

More Details

APPLICATION OF SECURE ELEMENTS TO ENHANCE REAL-TIME CONTINUOUS MONITORING AND CONFIGURATION

International Conference on Nuclear Engineering, Proceedings, ICONE

Rowland, Michael T.; Karch, Benjamin K.; Maccarone, Lee M.

The research investigates novel techniques to enhance supply chain security via addition of configuration management controls to protect Instrumentation and Control (I&C) systems of a Nuclear Power Plant (NPP). A secure element (SE) is integrated into a proof-of-concept testbed by means of a commercially available smart card, which provides tamper resistant key storage and a cryptographic coprocessor. The secure element simplifies setup and establishment of a secure communications channel between the configuration manager and verification system and the I&C system (running OpenPLC). This secure channel can be used to provide copies of commands and configuration changes of the I&C system for analysis.

More Details

System Integration for Grid-scale Hybrid Battery Technologies

Conference Proceedings - IEEE Applied Power Electronics Conference and Exposition - APEC

Dutta, Oindrilla; Mueller, Jacob M.; Wauneka, Robert W.; De Angelis, Valerio D.

In this work, a modular and open-source platform has been developed for integrating hybrid battery energy storage systems that are intended for grid applications. Alongside integration, this platform will facilitate testing and optimal operation of hybrid storage technologies. Here, a hardware testbed and a control software have been designed, where the former comprises commercial Lithium-iron-phosphate (LiFePO4) and Lead Acid (Pb - acid) cells, custom built Dual Active Bridge (DAB) DC-DC converters, and a commercial DC-AC conversion system. In this testbed the batteries have an operating voltage range of 11-15V, the DC-AC conversion stage has a DC link voltage of 24V, and it connects to a 208V3-φ grid. The hardware testbed can be scaled up to higher voltages. The control software is developed in Python, and the firmware for all the hardware components is developed in C. This software implements hybrid charge/discharge protocols that are suitable for each battery technology for preventing cell degradation, and perform uninter-rupted quality checks on selected battery packs. The developed platform provides flexibility, modularity, safety and economic benefits to utility-scale storage integration.

More Details

The Sliding Scale of Cybersecurity Applied to the Cybersecurity Analysis of Advanced Reactors

Proceedings of 13th Nuclear Plant Instrumentation, Control and Human-Machine Interface Technologies, NPIC and HMIT 2023

Maccarone, Lee M.; Rowland, Michael T.

The Sliding Scale of Cybersecurity is a framework for understanding the actions that contribute to cybersecurity. The model consists of five categories that provide varying value towards cybersecurity and incur varying implementation costs. These categories range from offensive cybersecurity measures providing the least value and incurring the greatest cost, to architecture providing the greatest value and incurring the least cost. This paper presents an application of the Sliding Scale of Cybersecurity to the Tiered Cybersecurity Analysis (TCA) of digital instrumentation and control systems for advanced reactors. The TCA consists of three tiers. Tier 1 is design and impact analysis. In Tier 1 it is assumed that the adversary has control over all digital systems, components, and networks in the plant, and that the adversary is only constrained by the physical limitations of the plant design. The plant’s safety design features are examined to determine whether the consequences of an attack by this cyber-enabled adversary are eliminated or mitigated. Accident sequences that are not eliminated or mitigated by security by design features are examined in Tier 2 analysis. In Tier 2, adversary access pathways are identified for the unmitigated accident sequences, and passive measures are implemented to deny system and network access to those pathways wherever feasible. Any systems with remaining susceptible access pathways are then examined in Tier 3. In Tier 3, active defensive cybersecurity architecture features and cybersecurity plan controls are applied to deny the adversary the ability to conduct the tasks needed to cause a severe consequence. Earlier application of the TCA in the design process provides greater opportunity for an efficient graded approach and defense-in-depth.

More Details

Orange Button: Accelerating the Digital Transformation of Distributed Energy

Conference Record of the IEEE Photovoltaic Specialists Conference

Hansen, Clifford H.; Rippingale, Jan; Transue, Taos; Court, Philip; Gorman, John

Data processing adds substantial soft costs to distributed energy systems. These costs are incurred primarily as labor necessary to collect, normalize, store and communicate data. The open-source Orange Button data exchange standard comprises data taxonomies, common data sources, and interoperable software tools which together can dramatically reduce these costs and thereby accelerate the deployment of distributed energy systems. We describe the data taxonomies and datasets, and the software enabled by these capabilities.

More Details

Using the Information Harm Triangle to Identify Risk-Informed Cybersecurity Strategies for Instrumentation and Control Systems

Nuclear Technology

Rowland, Michael T.; Maccarone, Lee M.; Clark, Andrew

The Information Harm Triangle (IHT) is a novel approach that aims to adapt intuitive engineering concepts to simplify defense in depth for instrumentation and control (I&C) systems at nuclear power plants. This approach combines digital harm, real-world harm, and unsafe control actions (UCAs) into a single graph named “Information Harm Triangle.” The IHT is based on the postulation that the consequences of cyberattacks targeting I&C systems can be expressed in terms of two orthogonal components: a component representing the magnitude of data harm (DH) (i.e., digital information harm) and a component representing physical information harm (PIH) (i.e., real-world harm, e.g., an inadvertent plant trip). The magnitude of the severity of the physical consequence is the aspect of risk that is of concern. The sum of these two components represents the total information harm. The IHT intuitively informs risk-informed cybersecurity strategies that employ independent measures that either act to prevent, reduce, or mitigate DH or PIH. Another aspect of the IHT is that the DH can result in cyber-initiated UCAs that result in severe physical consequences. The orthogonality of DH and PIH provides insights into designing effective defense in depth. The IHT can also represent cyberattacks that have the potential to impede, evade, or compromise countermeasures from taking appropriate action to reduce, stop, or mitigate the harm caused by such UCAs. Cyber-initiated UCAs transform DH to PIH.

More Details

A Fast Microprocessor-Based Traveling Wave Fault Detection System for Electrical Power Networks

2023 IEEE Power and Energy Society Innovative Smart Grid Technologies Conference, ISGT 2023

Montoya, Armando Y.; Jimenez Aparicio, Miguel J.; Hernandez Alvidrez, Javier H.; Reno, Matthew J.

This paper introduces a new microprocessor-based system that is capable of detecting faults via the Traveling Wave (TW) generated from a fault event. The fault detection system is comprised of a commercially available Digital Signal Processing (DSP) board capable of accurately sampling signals at high speeds, performing the Discrete Wavelet Transform (DWT) decomposition to extract features from the TW, and a detection algorithm that makes use of the extracted features to determine the occurrence of a fault. Results show that this inexpensive fault detection system's performance is comparable to commercially available TW relays as accurate sampling and fault detection are achieved in a hundred and fifty microseconds. A detailed analysis of the execution times of each part of the process is provided.

More Details

Soft Actor-Critic Based Voltage Support for Microgrid Using Energy Storage Systems

2023 IEEE PES Innovative Smart Grid Technologies Latin America, ISGT-LA 2023

Bhujel, Niranjan; Rai, Astha; Tamrakar, Ujjwol; Zhu, Yifeng; Hansen, Timothy M.; Hummels, Donald; Tonkoski, Reinaldo

A microgrid is characterized by a high R/X ratio, making the voltage more sensitive to active power changes unlike in bulk power systems where voltage is mostly regulated by reactive power. Because of its sensitivity to active power, control approach should incorporate active power as well. Thus, the voltage control approach for microgrids is very different from conventional power systems. The energy costs associated with these power are different. Furthermore, because of diverse generation sources and different components such as distributed energy resources, energy storage systems, etc, model-based control approaches might not perform very well. This paper proposes a reinforcement learning-based voltage support framework for a microgrid where an agent learns control policy by interacting with the microgrid without requiring a mathematical model of the system. A MATLAB/Simulink simulation study on a test system from Cordova, Alaska shows that there is a large reduction in voltage deviation (about 2.5-4.5 times). This reduction in voltage deviation can improve the power quality of the microgrid: ensuring a reliable supply, longer equipment lifespan, and stable user operations.

More Details
Results 2526–2550 of 96,771
Results 2526–2550 of 96,771