This technical report serves to summarize a literature search conducted that covered confidence calibration. This report is meant to serve as a solid starting reference for individuals interested in learning more about the confidence calibration domain as well as for individuals more familiar with this work – as a summarizing document for calibration metrics is notably lacking in the literature. This report is not meant to serve as a comprehensive review of everything that has been done in this field – in fact, the reader is encouraged to look further into this domain. We describe confidence and calibration and discuss properties of good calibration metrics. We detail various calibration and calibration-tangential metrics, presenting equations, algorithms, parameters, and an analysis of strengths and weaknesses. We apply a subset of these metrics to eight proxy confidence assessment datasets. We examine the various metrics in the context of model confidence. Finally, we discuss promising future directions and outstanding questions.
Redox flow batteries (RFBs) that incorporate solid energy-storing materials are attractive for high-capacity grid-scale energy storage due to their markedly higher theoretical energy densities compared to their fully liquid counterparts. However, this promise of higher energy density comes at the expense of rate capability. In this work we exploit a ZnO nanorod-decorated Ni foam scaffold to create a high surface area Li metal anode capable of rates up to 10 mA cm−2, a 10× improvement over traditional planar designs. The ZnO nanorods enhance Li metal wettability and promote uniform Li nucleation, allowing the RFB to be initially operated with a prelithiated (charged) anode, or with a safety-conscious, Li-less, fully discharged anode. 5 mgS cm−1 were cycled using a mediated S cathode, whereby redox mediators help oxidize and reduce solid S particles. At 2.4 mgS cm−2 and 10 mA cm−2, the RFB becomes limited by the mediation of solid S. Nevertheless, a respectable energy density of 20.3 Wh L−1 is demonstrated, allowing considerable increase if the S mediation rate can be further improved. Lessons learned here may be broadly applied to RFBs with alkali metal anodes, offering an avenue for safe, dense, grid-scale energy storage.
Sandia National Laboratories is a premier United States national security laboratory which develops science-based technologies in areas such as nuclear deterrence, energy production, and climate change. Computing plays a key role in its diverse missions, and within that environment, Research Software Engineers (RSEs) and other scientific software developers utilize testing automation to ensure quality and maintainability of their work. We conducted a Participatory Action Research study to explore the challenges and strategies for testing automation through the lens of academic literature. Through the experiences collected and comparison with open literature, we identify these challenges in testing automation and then present strategies for mitigation grounded in evidence-based practice and experience reports that other, similar institutions can assess for their automation needs.
This report summarizes the water inputs associated with four technologies playing diverse roles in energy transitions: hydrogen, solar photovoltaics (PV), wind, and batteries. Information in this report is drawn from multiple sources, including peer-reviewed literature, industry and international agency reports, EcoInvent life cycle inventory database, and subject matter expert (SME) consultations. Where possible, insights that characterized water requirements for specific stages of the technology development (e.g., operations, manufacturing, and mining) were prioritized over broader cradle-to-gate assessment values. Furthermore, both direct and indirect water requirements (i.e., associated with associated energy inputs) were considered in this literature review.
This report is a comprehensive guide to the nonlinear viscoelastic Spectacular model, which is an isotropic, thermo-rheologically simple constitutive model for glass-forming materials, such as amorphous polymers. Spectacular is intermediate in complexity to the previous PEC and SPEC models (Potential Energy Clock and Simplified Potential Energy Clock models, respectively). The model form consists of two parts: a Helmholtz free energy functional and a nonlinear material clock that controls the rate of viscoelastic relaxation. The Helmholtz free energy is derived from a series expansion about a reference state. Expressions for the stress and entropy functionals are derived from the Helmholtz free energy following the Rational Mechanics approach. The material clock depends on a simplified expression for the potential energy, which itself is a functional of the temperature and strain histories. This report describes the thermo-mechanical theory of Spectacular, the numerical methods for time-integrating the model, model verification for its implementation in LAMÉ, a user guide for its implementation in LAMÉ, and ideas for future work. A number of appendices provide supplementary mathematical details and a description of the procedure used to derive the simplified potential energy from the full expression for the potential energy. The goal of this report is create a convenient point-of-entry for engineers who wish to learn more about Spectacular, but also to serve as a reference manual for advanced users of the model.
This report represents completion of milestone deliverable M2SF-24SN010309082 Annual Status Update for OWL due on November 30, 2023. It contains the status of fiscal year 2023 (FY2023) updates for the Online Waste Library (OWL).
Here, a review of current trends in scientific computing reveals a broad shift to open-source and higher-level programming languages such as Python and growing career opportunities over the next decade. Open-source modeling tools accelerate innovation in equation-based and data-driven applications. Significant resources have been deployed to develop data-driven tools (PyTorch, TensorFlow, Scikit-learn) from tech companies that rely on machine learning services to meet business needs while keeping the foundational tools open. Open-source equation-based tools such as Pyomo, CasADi, Gekko, and JuMP are also gaining momentum according to user community and development pace metrics. Integration of data-driven and principles-based tools is emerging. New compute hardware, productivity software, and training resources have the potential to radically accelerate progress. However, long-term support mechanisms are still necessary to sustain the momentum and maintenance of critical foundational packages.
Wuestefeld, Andreas; Spica, Zack J.; Aderhold, Kasey; Huang, Hsin-Hua; Ma, Kuo-Fong; Lai, Voon H.; Miller, Meghan; Urmantseva, Lena; Zapf, Daniel; Bowden, Daniel C.; Edme, Pascal; Kiers, Tjeerd; Rinaldi, Antonio P.; Tuinstra, Katinka; Jestin, Camille; Diaz-Meza, Sergio; Jousset, Philippe; Wollin, Christopher; Ugalde, Arantza; Ruiz Barajas, Sandra; Gaite, Beatriz; Currenti, Gilda; Prestifilippo, Michele; Araki, Eiichiro; Tonegawa, Takashi; De Ridder, Sjoerd; Nowacki, Andy; Lindner, Fabian; Schoenball, Martin; Wetter, Christoph; Zhu, Hong-Hu; Baird, Alan F.; Rorstadbotnen, Robin A.; Ajo-Franklin, Jonathan; Ma, Yuanyuan; Abbott, Robert; Hodgkinson, Kathleen M.; Porritt, Robert W.; Stanciu, Adrian C.; Podrasky, Agatha; Hill, David; Biondi, Biondo; Yuan, Siyuan; Bin LuoBin; Nikitin, Sergei; Morten, Jan P.; Dumitru, Vlad-Andrei; Lienhart, Werner; Cunningham, Erin; Wang, Herbert
During February 2023, a total of 32 individual distributed acoustic sensing (DAS) systems acted jointly as a global seismic monitoring network. The aim of this Global DAS Month campaign was to coordinate a diverse network of organizations, instruments, and file formats to gain knowledge and move toward the next generation of earthquake monitoring networks. During this campaign, 156 earthquakes of magnitude 5 or larger were reported by the U.S. Geological Survey and contributors shared data for 60 min after each event’s origin time. Participating systems represent a variety of manufacturers, a range of recording parameters, and varying cable emplacement settings (e.g., shallow burial, borehole, subaqueous, and dark fiber). Monitored cable lengths vary between 152 and 120,129 m, with channel spacing between 1 and 49 m. The data has a total size of 6.8 TB, and are available for free download. Finally, organizing and executing the Global DAS Month has produced a unique dataset for further exploration and highlighted areas of further development for the seismological community to address.
Computational simulation is increasingly relied upon for high/consequence engineering decisions, which necessitates a high confidence in the calibration of and predictions from complex material models. However, the calibration and validation of material models is often a discrete, multi-stage process that is decoupled from material characterization activities, which means the data collected does not always align with the data that is needed. To address this issue, an integrated workflow for delivering an enhanced characterization and calibration procedure—Interlaced Characterization and Calibration (ICC)—is introduced and demonstrated. Further, this framework leverages Bayesian optimal experimental design (BOED), which creates a line of communication between model calibration needs and data collection capabilities in order to optimize the information content gathered from the experiments for model calibration. Eventually, the ICC framework will be used in quasi real-time to actively control experiments of complex specimens for the calibration of a high-fidelity material model. This work presents the critical first piece of algorithm development and a demonstration in determining the optimal load path of a cruciform specimen with simulated data. Calibration results, obtained via Bayesian inference, from the integrated ICC approach are compared to calibrations performed by choosing the load path a priori based on human intuition, as is traditionally done. The calibration results are communicated through parameter uncertainties which are propagated to the model output space (i.e. stress–strain). In these exemplar problems, data generated within the ICC framework resulted in calibrated model parameters with reduced measures of uncertainty compared to the traditional approaches.
Bimetallic, reactive multilayers are uniformly structured materials composed of alternating sputter-deposited layers that may be ignited to produce self-propagating mixing and formation reactions. These nanolaminates are most commonly used as rapid-release heat sources. The specific chemical composition at each metal/metal interface determines the rate of mass transport in a mixing and formation reaction. The inclusion of engineered diffusion barriers at each interface will not only inhibit solid-state mixing but also may impede the self-propagating reactions by introducing instabilities to wavefront morphology. This work examines the effect of adding diffusion barriers on the propagation of reaction waves in Co/Al multilayers. The Co/Al system has been shown to exhibit a reaction propagation instability that is dependent on the bilayer thickness, which allows for the occurrence of unstable modes in otherwise stable designs from the inclusion of diffusion barriers. Based on the known stability criteria in the Co/Al multilayer system, the way in which the inclusion of diffusion barriers changes a multilayer's heat of reaction, thermal conductivity, and material mixing mechanisms can be determined. These factors, in aggregate, lead to changes in the wavefront velocity and stability.
Photonic topological insulators exhibit bulk-boundary correspondence, which requires that boundary-localized states appear at the interface formed between topologically distinct insulating materials. However, many topological photonic devices share a boundary with free space, which raises a subtle but critical problem as free space is gapless for photons above the light line. Here, we use a local theory of topological materials to resolve bulk-boundary correspondence in heterostructures containing gapless materials and in radiative environments. In particular, we construct the heterostructure’s spectral localizer, a composite operator based on the system’s real-space description that provides a local marker for the system’s topology and a corresponding local measure of its topological protection; both quantities are independent of the material’s bulk band gap (or lack thereof). Moreover, we show that approximating radiative outcoupling as material absorption overestimates a heterostructure’s topological protection. Importantly, as the spectral localizer is applicable to systems in any physical dimension and in any discrete symmetry class (i.e., any Altland-Zirnbauer class), our results show how to calculate topological invariants, quantify topological protection, and locate topological boundary-localized resonances in topological materials that interface with gapless media in general.
Here, using atomistic molecular dynamics simulations, we investigate the morphology and transport properties of a new family of fluorine-free terpolymers designed as proton-exchange membranes. Simulated random terpolymers consist of three monomers with a 5-carbon backbone with a phenylsulfonate, phenyl, or no pendant group and have ion exchange capacities (IECs) ranging from 1.06–4.14 mmol/g. At a hydration level of 9, cluster analysis reveals macrophase separation between water and terpolymers with IEC < 2.1 mmol/g and continuous, percolated hydrophilic and hydrophobic nanoscale domains at higher IECs. Channel width distribution analysis of the percolated morphologies revealed that more hydrophobic units produce less uniform channels. Decreasing the surface area per sulfonate group and increasing the fractal dimension of the hydrophilic domains correlate with increased water diffusivity, due to a more acidic interface and more isotropic water channels. Relative to the previously studied phenylsulfonate homopolymer, these terpolymers with lower IECs have only modestly lower water diffusion, and we anticipate other advantages related to processability.
Nonlinear topological insulators have garnered substantial recent attention as they have both enabled the discovery of new physics due to interparticle interactions, and may have applications in photonic devices such as topological lasers and frequency combs. However, due to the local nature of nonlinearities, previous attempts to classify the topology of nonlinear systems have required significant approximations that must be tailored to individual systems. Here, we develop a general framework for classifying the topology of nonlinear materials in any discrete symmetry class and any physical dimension. Our approach is rooted in a numerical $K$ -theoretic method called the spectral localizer, which leverages a real-space perspective of a system to define local topological markers and a local measure of topological protection. Here, our nonlinear spectral localizer framework yields a quantitative definition of topologically nontrivial nonlinear modes that are distinguished by the appearance of a topological interface surrounding the mode. Moreover, we show how the nonlinear spectral localizer can be used to understand a system's topological dynamics, i.e., the time evolution of nonlinearly induced topological domains within a system. We anticipate that this framework will enable the discovery and development of novel topological systems across a broad range of nonlinear materials.
Derived from renewable feedstocks, such as biomass, polylactic acid (PLA) is considered a more environmentally friendly plastic than conventional petroleum-based polyethylene terephthalate (PET). However, PLA must still be recycled, and its growing popularity and mixture with PET plastics at the disposal stage poses a cross-contamination threat in existing recycling facilities and results in low-value and low-quality recycled products. Hybrid upcycling has been proposed as a promising sustainable solution for mixed plastic waste, but its techno-economic and life cycle environmental performance remain understudied. Here we propose a hybrid upcycling approach using a biocompatible ionic liquid (IL) to first chemically depolymerize plastics and then convert the depolymerized stream via biological upgrading with no extra separation. We show that over 95% of mixed PET/PLA was depolymerized into the respective monomers, which then served as the sole carbon source for the growth of Pseudomonas putida, enabling the conversion of the depolymerized plastics into biodegradable polyhydroxyalkanoates (PHAs). In comparison to conventional commercial PHAs, the estimated optimal production cost and carbon footprint are reduced by 62% and 29%, respectively.
The United States Department of Energy’s (DOE) Office of Nuclear Energy’s Spent Fuel and Waste Science and Technology Campaign seeks to better understand the technical basis, risks, and uncertainty associated with the safe and secure disposition of spent nuclear fuel (SNF) and high-level radioactive waste. Commercial nuclear power generation in the United States has resulted in thousands of metric tons of SNF, the disposal of which is the responsibility of DOE (Nuclear Waste Policy Act of 1982, as amended). Any repository licensed to dispose of SNF must meet requirements regarding the long-term performance of that repository. The evaluation of long-term performance of the repository may need to consider the SNF achieving a critical configuration during the postclosure period. Of particular interest is the potential for this situation to occur in dual-purpose canisters (DPCs), which are currently licensed and being used to store and transport SNF but were not designed for permanent geologic disposal. DOE has been considering disposing of SNF in DPCs to avoid the costs and worker dose associated with repackaging the SNF currently stored in DPCs into repository-specific canisters. This report examines the consequences of postclosure criticality to provide technical support to DOE in developing a disposal plan.
Sheldon, Craig S.; Salazar, Jorge; Palacios Diaz, Teresa; Morton, Katie; Davis, Ryan; Davies, James F.
Aerosol particles are known to exist in highly viscous amorphous states at a low relative humidity and temperature. The slow diffusion of molecules in viscous particles impacts the uptake and loss of volatile and semivolatile species and the rate of heterogeneous chemistry. Recent work has demonstrated that in particles containing organic molecules and salts, the formation of two-phase gel states is possible, leading to observations of rigid particles that resist coalescence. The way that molecules diffuse and transport in gel systems is not well-characterized. In this work, we use an electrodynamic balance to levitate sample particles containing a range of organic compounds in mixtures with calcium chloride and measure the rate of water diffusion. Particles of the pure organics have been shown to form viscous amorphous states, while in mixtures with divalent salts, coalescence measurements have revealed the apparent solidification of particles, consistent with the formation of a gel state facilitated by ion-molecule interactions. We report in several cases that water transport can actually be increased in the rigid gel state relative to the pure compound that forms a viscous state under similar conditions. These measurements reveal the limitations of using viscosity as a metric for predicting molecular diffusion and that the gel structure that forms is a much stronger controlling factor in the rate of diffusion. This underscores the need for diffusion measurements as well as a deeper understanding of noncovalent molecular assembly that leads to supramolecular structures in aerosol particles.
An optically recording velocity interferometer system has been used to measure acceleration histories and maximum velocities for laser-driven aluminum foil targets launched from the output face of optical fibers. Peak flyer velocities have been determined as a function of various parameters, including driving laser fluence, laser pulse duration and target thickness. The results at high fluences are consistent with a nearly constant efficiency of coupling optical energy into flyer kinetic energy and a small ablated mass fraction; however, the coupling efficiency falls off rapidly at fluences < 15 J-cm-2. Measurement of the time delay between laser pulse arrival at the target and the onset of flyer motion have also been performed. Significant delays are observed at low fluences, arising from the increased time required for plasma formation at the fiber/foil interface under these conditions.
Howard, Amanda A.; Perego, Mauro; Karniadakis, George E.; Stinis, Panos
Operator learning for complex nonlinear systems is increasingly common in modeling multi-physics and multi-scale systems. However, training such high-dimensional operators requires a large amount of expensive, high-fidelity data, either from experiments or simulations. In this work, we present a composite Deep Operator Network (DeepONet) for learning using two datasets with different levels of fidelity to accurately learn complex operators when sufficient high-fidelity data is not available. Additionally, we demonstrate that the presence of low-fidelity data can improve the predictions of physics-informed learning with DeepONets. We demonstrate the new multi-fidelity training in diverse examples, including modeling of the ice-sheet dynamics of the Humboldt glacier, Greenland, using two different fidelity models and also using the same physical model at two different resolutions.
The purpose of pvOps is to support empirical evaluations of data collected in the field related to the operations and maintenance (O&M) of photovoltaic (PV) power plants. pvOps presently contains modules that address the diversity of field data, including text-based maintenance logs, current-voltage (IV) curves, and timeseries of production information. The package functions leverage machine learning, visualization, and other techniques to enable cleaning, processing, and fusion of these datasets. These capabilities are intended to facilitate easier evaluation of field patterns and extraction of relevant insights to support reliability-related decision-making for PV sites. The open-source code, examples, and instructions for installing the package through PyPI can be accessed through the GitHub repository.
Electric fields are commonplace in plasmas and affect transport by driving currents and, in some cases, instabilities. The necessary condition for instability in collisionless plasmas is commonly understood to be described by the Penrose criterion, which quantifies a sufficient relative drift between different populations of particles that must be present for wave amplification via inverse Landau damping. For example, electric fields generate drifts between electrons and ions that can excite the ion-acoustic instability. Here, we use particle-in-cell simulations and linear stability analysis to show that the electric field can drive a fundamentally different type of kinetic instability, named the electron-field instability. This instability excites electron plasma waves with wavelengths ≳30λDe, has a growth rate that is proportional to the electric field strength, and does not require a relative drift between electrons and ions. The Penrose criterion does not apply when accounting for the electric field. Furthermore, the large value of the observed frequency, near the electron plasma frequency, further distinguishes it from the standard ion-acoustic instability, which oscillates near the ion plasma frequency. The ubiquity of macroscopic electric fields in quasineutral plasmas suggests that this instability is possible in a host of systems, including low-temperature and space plasmas. In fact, damping from neutral collisions in such systems is often not enough to completely damp the instability, adding to the robustness of the instability across plasma conditions.
Sandia National Laboratories (SNL) and the Institut de Radioprotection et de Sûreté Nucléaire (IRSN) have collaborated on the design and execution of a set of critical experiments that explore the effects of molybdenum in water moderated fuel-rod arrays. The molybdenum is included as sleeves (tubes) on some of the fuel rods in the arrays. The fuel used in the experiments is known at Sandia as the Seven Percent Critical Experiment (7uPCX) fuel. This fuel has been used is several published benchmark evaluations in including LEU-COMP-THERM-78 and LEU-COMP THERM-080.
Characterizing and quantifying microstructure evolution is critical to forming quantitative relationships between material processing conditions, resulting microstructure, and observed properties. Machine-learning methods are increasingly accelerating the development of these relationships by treating microstructure evolution as a pattern recognition problem, discovering relationships explicitly or implicitly. These methods often rely on identifying low-dimensional microstructural fingerprints as latent variables. However, using inappropriate latent variables can lead to challenges in learning meaningful relationships. In this work, we survey and discuss the ability of various linear and nonlinear dimensionality reduction methods including principal component analysis, autoencoders, and diffusion maps to quantify and characterize the learned latent space microstructural representations and their time evolution. We characterize latent spaces by their ability to represent high-dimensional microstructural data in terms of compression achieved as a function of the number of latent dimensions required to represent the data accurately, their accuracy based on their reconstruction performance, and the smoothness of the microstructural trajectories in latent dimension. We quantify these metrics for common microstructure evolution problems in material science including spinodal decomposition of a binary metallic alloy, thin film deposition of a binary metallic alloy, dendritic growth, and grain growth in a polycrystal. This study provides considerations and guidelines for choosing dimensionality reduction methods when considering materials problems that involve high dimensional data and a variety of features over a range of lengths and time scales.
Journal of Physical Chemistry. A, Molecules, Spectroscopy, Kinetics, Environment, and General Theory
Cho, Jaeyoung; Rosch, Daniel; Tao, Yujie; Osborn, David L.; Klippenstein, Stephen J.; Sheps, Leonid; Sivaramakrishnan, Raghu
Methyl formate (MF; CH3OCHO) is the smallest representative of esters, which are common components of biodiesel. The present study characterizes the thermal dissociation kinetics of the radicals formed by H atom abstraction from MF—CH3OCO and CH2OCHO—through a combination of modeling, experiment, and theory. For the experimental effort, excimer laser photolysis of Cl2 was used as a source of Cl atoms to initiate reactions with MF in the gas phase. Time-resolved species profiles of MF, Cl2, HCl, CO2, CH3, CH3Cl, CH2O, and CH2ClOCHO were measured and quantified using photoionization mass spectrometry at temperatures of 400–750 K and 10 Torr. The experimental data were simulated using a kinetic model, which was informed by ab initio-based theoretical kinetics calculations and included chlorine chemistry and secondary reactions of radical decomposition products. Here, we calculated the rate coefficients for the H-abstraction reactions Cl + MF → HCl + CH3OCO (R1a) and Cl + MF → HCl + CH2OCHO (R1b): k1a,theory = 6.71 × 10–15·T1.14·exp(—606/T) cm3/molecule·s; k1b,theory = 4.67 × 10–18·T2.21·exp(—245/T) cm3/molecule·s over T = 200–2000 K. Electronic structure calculations indicate that the barriers to CH3OCO and CH2OCHO dissociation are 13.7 and 31.6 kcal/mol and lead to CH3 + CO2 (R3) and CH2O + HCO (R5), respectively. The master equation-based theoretical rate coefficients are k3,theory (P = ∞) = 2.94 × 109·T1.21·exp(—6209/T) s–1 and k5,theory (P = ∞) = 8.45 × 108·T1.39·exp(—15132/T) s–1 over T = 300–1500 K. The calculated branching fractions into R1a and R1b and the rate coefficient for R5 were validated by modeling of the experimental species time profiles and found to be in excellent agreement with theory. Additionally, we found that the bimolecular reactions CH2OCHO + Cl, CH2OCHO + Cl2, and CH3 + Cl2 were critical to accurately model the experimental data and constrain the kinetics of MF-radicals. Inclusion of the kinetic parameters determined in this study showed a significant impact on combustion simulations of larger methyl esters, which are considered as biodiesel surrogates.