Publications

Results 4201–4225 of 99,299

Search results

Jump to search filters

Global soil profiles indicate depth-dependent soil carbon losses under a warmer climate

Nature Communications

Wang, Mingming; Guo, Xiaowei; Zhang, Shuai; Xiao, Liujun; Mishra, Umakant; Yang, Yuanhe; Zhu, Biao; Wang, Guocheng; Mao, Xiali; Qian, Tian; Jiang, Tong; Shi, Zhou; Luo, Zhongkui

Soil organic carbon (SOC) changes under future climate warming are difficult to quantify in situ. Here we apply an innovative approach combining space-for-time substitution with meta-analysis to SOC measurements in 113,013 soil profiles across the globe to estimate the effect of future climate warming on steady-state SOC stocks. We find that SOC stock will reduce by 6.0 ± 1.6% (mean±95% confidence interval), 4.8 ± 2.3% and 1.3 ± 4.0% at 0–0.3, 0.3–1 and 1–2 m soil depths, respectively, under 1 °C air warming, with additional 4.2%, 2.2% and 1.4% losses per every additional 1 °C warming, respectively. The largest proportional SOC losses occur in boreal forests. Existing SOC level is the predominant determinant of the spatial variability of SOC changes with higher percentage losses in SOC-rich soils. Our work demonstrates that warming induces more proportional SOC losses in topsoil than in subsoil, particularly from high-latitudinal SOC-rich systems.

More Details

Distributed State Estimation Over Time-Varying Graphs: Exploiting the Age-of-Information

IEEE Transactions on Automatic Control

Mitra, Aritra; Richards, John A.; Bagchi, Saurabh

We study the problem of designing a distributed observer for an LTI system over a time-varying communication graph. The limited existing work on this topic imposes various restrictions either on the observation model or on the sequence of communication graphs. In contrast, we propose a single-time-scale distributed observer that works under mild assumptions. Specifically, our communication model only requires strong-connectivity to be preserved over nonoverlapping, contiguous intervals that are even allowed to grow unbounded over time. We show that under suitable conditions that bound the growth of such intervals, joint observability is sufficient to track the state of any discrete-time LTI system exponentially fast, at any desired rate. We also develop a variant of our algorithm that is provably robust to worst-case adversarial attacks, provided the sequence of graphs is sufficiently connected over time. The key to our approach is the notion of a 'freshness-index' that keeps track of the age-of-information being diffused across the network. Such indices enable nodes to reject stale estimates of the state, and, in turn, contribute to stability of the error dynamics.

More Details

A silicon singlet–triplet qubit driven by spin-valley coupling

Nature Communications

Jock, Ryan M.; Jacobson, Noah T.; Rudolph, Martin; Ward, Daniel R.; Carroll, Malcolm S.; Luhman, Dwight R.

Spin–orbit effects, inherent to electrons confined in quantum dots at a silicon heterointerface, provide a means to control electron spin qubits without the added complexity of on-chip, nanofabricated micromagnets or nearby coplanar striplines. Here, we demonstrate a singlet–triplet qubit operating mode that can drive qubit evolution at frequencies in excess of 200 MHz. This approach offers a means to electrically turn on and off fast control, while providing high logic gate orthogonality and long qubit dephasing times. We utilize this operational mode for dynamical decoupling experiments to probe the charge noise power spectrum in a silicon metal-oxide-semiconductor double quantum dot. In addition, we assess qubit frequency drift over longer timescales to capture low-frequency noise. We present the charge noise power spectral density up to 3 MHz, which exhibits a 1/fα dependence consistent with α ~ 0.7, over 9 orders of magnitude in noise frequency.

More Details

Neural-network based collision operators for the Boltzmann equation

Journal of Computational Physics

Roberts, Nathan V.; Bond, Stephen D.; Cyr, Eric C.; Miller, Sean T.

Kinetic gas dynamics in rarefied and moderate-density regimes have complex behavior associated with collisional processes. These processes are generally defined by convolution integrals over a high-dimensional space (as in the Boltzmann operator), or require evaluating complex auxiliary variables (as in Rosenbluth potentials in Fokker-Planck operators) that are challenging to implement and computationally expensive to evaluate. In this work, we develop a data-driven neural network model that augments a simple and inexpensive BGK collision operator with a machine-learned correction term, which improves the fidelity of the simple operator with a small overhead to overall runtime. The composite collision operator has a tunable fidelity and, in this work, is trained using and tested against a direct-simulation Monte-Carlo (DSMC) collision operator.

More Details

Long-range cooperative resonances in rare-earth ion arrays inside photonic resonators

Communications Physics

Pak, Dongmin; Nandi, Arindam; Titze, Michael; Bielejec, Edward S.; Alaeian, Hadiseh; Hosseini, Hosseini

Engineering arrays of active optical centers to control the interaction Hamiltonian between light and matter has been the subject of intense research recently. Collective interaction of atomic arrays with optical photons can give rise to directionally enhanced absorption or emission, which enables engineering of broadband and strong atom-photon interfaces. Here, we report on the observation of long-range cooperative resonances in an array of rare-earth ions controllably implanted into a solid-state lithium niobate micro-ring resonator. We show that cooperative effects can be observed in an ordered ion array extended far beyond the light’s wavelength. We observe enhanced emission from both cavity-induced Purcell enhancement and array-induced collective resonances at cryogenic temperatures. Engineering collective resonances as a paradigm for enhanced light-matter interactions can enable suppression of free-space spontaneous emission. The multi-functionality of lithium niobate hosting rare-earth ions can open possibilities of quantum photonic device engineering for scalable and multiplexed quantum networks.

More Details

Electron dynamics in extended systems within real-time time-dependent density-functional theory

MRS Communications

Kononov, Alina K.; Lee, Cheng W.; Dos Santos, Tatiane P.; Robinson, Brian; Yao, Yifan; Yao, Yi; Andrade, Xavier; Baczewski, Andrew D.; Constantinescu, Emil; Correa, Alfredo A.; Kanai, Yosuke; Modine, Normand A.; Schleife, Andre

Abstract: Due to a beneficial balance of computational cost and accuracy, real-time time-dependent density-functional theory has emerged as a promising first-principles framework to describe electron real-time dynamics. Here we discuss recent implementations around this approach, in particular in the context of complex, extended systems. Results include an analysis of the computational cost associated with numerical propagation and when using absorbing boundary conditions. We extensively explore the shortcomings for describing electron–electron scattering in real time and compare to many-body perturbation theory. Modern improvements of the description of exchange and correlation are reviewed. In this work, we specifically focus on the Qb@ll code, which we have mainly used for these types of simulations over the last years, and we conclude by pointing to further progress needed going forward. Graphical abstract: [Figure not available: see fulltext.].

More Details

Closed-loop optimization of fast trapped-ion shuttling with sub-quanta excitation

npj Quantum Information

Sterk, Jonathan D.; Coakley, Henry; Goldberg, Joshua D.; Hietala, Vincent; Lechtenberg, Jason; Mcguinness, Hayden J.E.; Mcmurtrey, Daniel; Parazzoli, L.P.; Van Der Wall, Jay W.; Stick, Daniel L.

Shuttling ions at high speed and with low motional excitation is essential for realizing fast and high-fidelity algorithms in many trapped-ion-based quantum computing architectures. Achieving such performance is challenging due to the sensitivity of an ion to electric fields and the unknown and imperfect environmental and control variables that create them. Here we implement a closed-loop optimization of the voltage waveforms that control the trajectory and axial frequency of an ion during transport in order to minimize the final motional excitation. The resulting waveforms realize fast round-trip transport of a trapped ion across multiple electrodes at speeds of 0.5 electrodes per microsecond (35 m·s−1 for a one-way transport of 210 μm in 6 μs) with a maximum of 0.36 ± 0.08 mean quanta gain. This sub-quanta gain is independent of the phase of the secular motion at the distal location, obviating the need for an electric field impulse or time delay to eliminate the coherent motion.

More Details

Low-dimensional physics of clay particle size distribution and layer ordering

Scientific Reports

Wang, Yifeng

Clays are known for their small particle sizes and complex layer stacking. We show here that the limited dimension of clay particles arises from the lack of long-range order in low-dimensional systems. Because of its weak interlayer interaction, a clay mineral can be treated as two separate low-dimensional systems: a 2D system for individual phyllosilicate layers and a quasi-1D system for layer stacking. The layer stacking or ordering in an interstratified clay can be described by a 1D Ising model while the limited extension of individual phyllosilicate layers can be related to a 2D Berezinskii–Kosterlitz–Thouless transition. This treatment allows for a systematic prediction of clay particle size distributions and layer stacking as controlled by the physical and chemical conditions for mineral growth and transformation. Clay minerals provide a useful model system for studying a transition from a 1D to 3D system in crystal growth and for a nanoscale structural manipulation of a general type of layered materials.

More Details

Reconfigurable quantum phononic circuits via piezo-acoustomechanical interactions

npj Quantum Information

Taylor, J.C.; Chatterjee, Eric; Kindel, William; Soh, Daniel B.S.; Eichenfield, Matt

We show that piezoelectric strain actuation of acoustomechanical interactions can produce large phase velocity changes in an existing quantum phononic platform: aluminum nitride on suspended silicon. Using finite element analysis, we demonstrate a piezo-acoustomechanical phase shifter waveguide capable of producing ±π phase shifts for GHz frequency phonons in 10s of μm with 10s of volts applied. Then, using the phase shifter as a building block, we demonstrate several phononic integrated circuit elements useful for quantum information processing. In particular, we show how to construct programmable multi-mode interferometers for linear phononic processing and a dynamically reconfigurable phononic memory that can switch between an ultra-long-lifetime state and a state strongly coupled to its bus waveguide. From the master equation for the full open quantum system of the reconfigurable phononic memory, we show that it is possible to perform read and write operations with over 90% quantum state transfer fidelity for an exponentially decaying pulse.

More Details

Training data selection for accuracy and transferability of interatomic potentials

npj Computational Materials

De Zapiain, David M.; Wood, M.A.; Lubbers, Nicholas; Pereyra, Carlos Z.; Thompson, A.P.; Perez, Danny

Advances in machine learning (ML) have enabled the development of interatomic potentials that promise the accuracy of first principles methods and the low-cost, parallel efficiency of empirical potentials. However, ML-based potentials struggle to achieve transferability, i.e., provide consistent accuracy across configurations that differ from those used during training. In order to realize the promise of ML-based potentials, systematic and scalable approaches to generate diverse training sets need to be developed. This work creates a diverse training set for tungsten in an automated manner using an entropy optimization approach. Subsequently, multiple polynomial and neural network potentials are trained on the entropy-optimized dataset. A corresponding set of potentials are trained on an expert-curated dataset for tungsten for comparison. The models trained to the entropy-optimized data exhibited superior transferability compared to the expert-curated models. Furthermore, the models trained to the expert-curated set exhibited a significant decrease in performance when evaluated on out-of-sample configurations.

More Details

Ab initio molecular dynamics free energy study of enhanced copper (II) dimerization on mineral surfaces

Communications Chemistry

Leung, Kevin; Greathouse, Jeffery A.

Understanding the adsorption of isolated metal cations from water on to mineral surfaces is critical for toxic waste retention and cleanup in the environment. Heterogeneous nucleation of metal oxyhydroxides and other minerals on material surfaces is key to crystal growth and dissolution. The link connecting these two areas, namely cation dimerization and polymerization, is far less understood. In this work we apply ab initio molecular dynamics calculations to examine the coordination structure of hydroxide-bridged Cu(II) dimers, and the free energy changes associated with Cu(II) dimerization on silica surfaces. The dimer dissociation pathway involves sequential breaking of two Cu2+-OH− bonds, yielding three local minima in the free energy profiles associated with 0-2 OH− bridges between the metal cations, and requires the design of a (to our knowledge) novel reaction coordinate for the simulations. Cu(II) adsorbed on silica surfaces are found to exhibit stronger tendency towards dimerization than when residing in water. Cluster-plus-implicit-solvent methods yield incorrect trends if OH− hydration is not correctly depicted. The predicted free energy landscapes are consistent with fast equilibrium times (seconds) among adsorbed structures, and favor Cu2+ dimer formation on silica surfaces over monomer adsorption.

More Details

A compact cold-atom interferometer with a high data-rate grating magneto-optical trap and a photonic-integrated-circuit-compatible laser system

Nature Communications

Lee, Jongmin; Ding, Roger; Christensen, Justin; Rosenthal, Randy R.; Ison, Aaron; Gillund, Daniel P.; Bossert, David; Fuerschbach, Kyle H.; Kindel, William; Finnegan, Patrick S.; Wendt, Joel R.; Gehl, Michael; Kodigala, Ashok; Mcguinness, Hayden J.E.; Walker, Charles A.; Kemme, Shanalyn A.; Lentine, Anthony; Biedermann, Grant; Schwindt, Peter D.

The extreme miniaturization of a cold-atom interferometer accelerometer requires the development of novel technologies and architectures for the interferometer subsystems. Here, we describe several component technologies and a laser system architecture to enable a path to such miniaturization. We developed a custom, compact titanium vacuum package containing a microfabricated grating chip for a tetrahedral grating magneto-optical trap (GMOT) using a single cooling beam. In addition, we designed a multi-channel photonic-integrated-circuit-compatible laser system implemented with a single seed laser and single sideband modulators in a time-multiplexed manner, reducing the number of optical channels connected to the sensor head. In a compact sensor head containing the vacuum package, sub-Doppler cooling in the GMOT produces 15 μK temperatures, and the GMOT can operate at a 20 Hz data rate. We validated the atomic coherence with Ramsey interferometry using microwave spectroscopy, then demonstrated a light-pulse atom interferometer in a gravimeter configuration for a 10 Hz measurement data rate and T = 0–4.5 ms interrogation time, resulting in Δg/g = 2.0 × 10−6. This work represents a significant step towards deployable cold-atom inertial sensors under large amplitude motional dynamics.

More Details

Self-Adhesive Ionomers for Alkaline Electrolysis: Optimized Hydrogen Evolution Electrode

Journal of the Electrochemical Society

Tee, Hui M.; Park, Habin; Shah, Parin N.; Trindell, Jamie T.; Sugar, Joshua D.; Kohl, Paul A.

Hydrogen produced through low-temperature water electrolysis using anion exchange membranes (AEM) combines the benefits of liquid-electrolyte alkaline electrolysis and solid-polymer proton exchange membrane electrolysis. The anion conductive ionomers in the oxygen-producing anode and hydrogen-producing cathode are a critical part of the three-dimensional electrodes. The ionomer in the hydrogen-producing cathode facilitates hydroxide ion conduction from the cathode catalyst to the anode catalyst, and water transport from the anode to the cathode catalyst through the AEM. This ionomer also binds the catalyst particles to the porous transport layer. In this study, the cathode durability was improved by use of a self-adhesive cathode ionomer to chemically bond the cathode catalyst particles to the porous transport layer. It was found that the cathode ionomers with high ion exchange capacity (IEC) were more effective than low IEC ionomers because of the need to transport water to the cathode catalyst and transport hydroxide away from the cathode. The cathode durability was improved by using ionomers which were soluble in the spray-coated cathode ink. Optimization of the catalyst and ionomer content within the cathode led to electrolysis cells which were both mechanically durable and operated at low voltage.

More Details

Crystallographic effects on transgranular chloride-induced stress corrosion crack propagation of arc welded austenitic stainless steel

npj Materials Degradation

Qu, Haozheng J.; Tao, Fei; Gu, Nianju; Montoya, Timothy M.; Taylor, Jason M.; Schaller, Rebecca S.; Schindelholz, Eric; Wharry, Janelle P.

The effect of crystallography on transgranular chloride-induced stress corrosion cracking (TGCISCC) of arc welded 304L austenitic stainless steel is studied on >300 grains along crack paths. Schmid and Taylor factor mismatches across grain boundaries (GBs) reveal that cracks propagate either from a hard to soft grain, which can be explained merely by mechanical arguments, or soft to hard grain. In the latter case, finite element analysis reveals that TGCISCC will arrest at GBs without sufficient mechanical stress, favorable crystallographic orientations, or crack tip corrosion. GB type does not play a significant role in determining TGCISCC cracking behavior nor susceptibility. TGCISCC crack behaviors at GBs are discussed in the context of the competition between mechanical, crystallographic, and corrosion factors.

More Details

Impacts of Crystalline Host Rock on Repository Barrier Materials at 250 °C: Hydrothermal Co-Alteration of Wyoming Bentonite and Steel in the Presence of Grimsel Granodiorite

Minerals

Zandanel, Amber; Sauer, Kirsten B.; Rock, Marlena; Caporuscio, Florie A.; Telfeyan, Katherine; Matteo, Edward N.

Direct disposal of dual-purpose canisters (DPC) has been proposed to streamline the disposal of spent nuclear fuel. However, there are scenarios where direct disposal of DPCs may result in temperatures in excess of the specified upper temperature limits for some engineered barrier system (EBS) materials, which may cause alteration within EBS materials dependent on local conditions such as host rock composition, chemistry of the saturating groundwaters, and interactions between barrier materials themselves. Here we report the results of hydrothermal experiments reacting EBS materials—bentonite buffer and steel—with an analogue crystalline host rock and groundwater at 250 °C. Experiment series explored the effect of reaction time on the final products and the effects of the mineral and fluid reactants on different steel types. Post-mortem X-ray diffraction, electron microprobe, and scanning electron microscopy analyses showed characteristic alteration of both bentonite and steel, including the formation of secondary zeolite and calcium silicate hydrate minerals within the bentonite matrix and the formation of iron-bearing clays and metal oxides at the steel surfaces. Swelling clays in the bentonite matrix were not quantitatively altered to non-swelling clay species by the hydrothermal conditions. The combined results of the solution chemistry over time and post-mortem mineralogy suggest that EBS alteration is more sensitive to initial groundwater chemistry than the presence of host rock, where limited potassium concentration in the solution prohibits conversion of the smectite minerals in the bentonite matrix to non-swelling clay species.

More Details

Managing Climate-Driven Zoonotic Risk Interagency Workshop Report

Branda, Catherine; Hackenburg, Diana; Falzarano, Anthony R.

In July 2022, Sandia National Laboratories hosted a workshop in Washington, D.C., bringing together representatives from eleven Federal Government agencies, responsible for public health, environmental security, and biodefense, as well as six Department of Energy (DOE) National Laboratories, to discuss how to work together to address climate-driven zoonotic disease risk. The primary goal of this workshop was to provide a forum for Federal and DOE National Lab attendees to share their missions, programs, and capabilities relevant to zoonotic disease emergence, to discuss how to best leverage these collective resources, identify key gaps, and to determine an effective path forward.

More Details
Results 4201–4225 of 99,299
Results 4201–4225 of 99,299