Publications

14 Results

Search results

Jump to search filters

Performance and Energy Simulation of Spiking Neuromorphic Architectures for Fast Exploration

ACM International Conference Proceeding Series

Boyle, James; Plagge, Mark P.; Cardwell, Suma G.; Chance, Frances S.; Gerstlauer, Andreas

Recent work in neuromorphic computing has proposed a range of new architectures for Spiking Neural Network (SNN)-based systems. However, neuromorphic design lacks a framework to facilitate exploration of different SNN-based architectures and aid with early design decisions. While there are various SNN simulators, none can be used to rapidly estimate latency and energy of different spiking architectures. We show that while current spiking designs differ in implementation, they have common features which can be represented as a generic architecture template. We describe an initial version of a framework that simulates a range of neuromorphic architectures at an abstract time-step granularity. We demonstrate our simulator by modeling Intel's Loihi platform, estimating time-varying energy and latency with less than 10% mean error for various sizes of a two-layer SNN.

More Details

ATHENA: Analytical Tool for Heterogeneous Neuromorphic Architectures

Cardwell, Suma G.; Plagge, Mark P.; Hughes, Clayton H.; Rothganger, Fredrick R.; Agarwal, Sapan A.; Feinberg, Benjamin F.; Awad, Amro; Mcfarland, John; Parker, Luke G.

The ASC program seeks to use machine learning to improve efficiencies in its stockpile stewardship mission. Moreover, there is a growing market for technologies dedicated to accelerating AI workloads. Many of these emerging architectures promise to provide savings in energy efficiency, area, and latency when compared to traditional CPUs for these types of applications — neuromorphic analog and digital technologies provide both low-power and configurable acceleration of challenging artificial intelligence (AI) algorithms. If designed into a heterogeneous system with other accelerators and conventional compute nodes, these technologies have the potential to augment the capabilities of traditional High Performance Computing (HPC) platforms [5]. This expanded computation space requires not only a new approach to physics simulation, but the ability to evaluate and analyze next-generation architectures specialized for AI/ML workloads in both traditional HPC and embedded ND applications. Developing this capability will enable ASC to understand how this hardware performs in both HPC and ND environments, improve our ability to port our applications, guide the development of computing hardware, and inform vendor interactions, leading them toward solutions that address ASC’s unique requirements.

More Details

Modeling Analog Tile-Based Accelerators Using SST

Feinberg, Benjamin F.; Agarwal, Sapan A.; Plagge, Mark P.; Rothganger, Fredrick R.; Cardwell, Suma G.; Hughes, Clayton H.

Analog computing has been widely proposed to improve the energy efficiency of multiple important workloads including neural network operations, and other linear algebra kernels. To properly evaluate analog computing and explore more complex workloads such as systems consisting of multiple analog data paths, system level simulations are required. Moreover, prior work on system architectures for analog computing often rely on custom simulators creating signficant additional design effort and complicating comparisons between different systems. To remedy these issues, this report describes the design and implementation of a flexible tile-based analog accelerator element for the Structural Simulation Toolkit (SST). The element focuses on heavily on the tile controller—an often neglected aspect of prior work—that is sufficiently versatile to simulate a wide range of different tile operations including neural network layers, signal processing kernels, and generic linear algebra operations without major constraints. The tile model also interoperates with existing SST memory and network models to reduce the overall development load and enable future simulation of heterogeneous systems with both conventional digital logic and analog compute tiles. Finally, both the tile and array models are designed to easily support future extensions as new analog operations and applications that can benefit from analog computing are developed.

More Details

Exploring characteristics of neural network architecture computation for enabling SAR ATR

Proceedings of SPIE - The International Society for Optical Engineering

Melzer, Ryan D.; Severa, William M.; Plagge, Mark P.; Vineyard, Craig M.

Neural network approaches have periodically been explored in the pursuit of high performing SAR ATR solutions. With deep neural networks (DNNs) now offering many state-of-The-Art solutions to computer vision tasks, neural networks are once again being revisited for ATR processing. Here, we characterize and explore a suite of neural network architectural topologies. In doing so, we assess how different architectural approaches impact performance and consider the associated computational costs. This includes characterizing network depth, width, scale, connectivity patterns, as well as convolution layer optimizations. We have explored a suite of architectural topologies applied to both the canonical MSTAR dataset, as well as the more operationally realistic Synthetic and Measured Paired and Labeled Experiment (SAMPLE) dataset. The latter pairs high fidelity computational models of targets with actual measured SAR data. Effectively, this dataset offers the ability to train a DNN on simulated data and test the network performance on measured data. Not only does our in-depth architecture topology analysis offer insight into how different architectural approaches impact performance, but we also have trained DNNs attaining state-of-The-Art performance on both datasets. Furthermore, beyond just accuracy, we also assess how efficiently an accelerator architecture executes these neural networks. Specifically, Using an analytical assessment tool, we forecast energy and latency for an edge TPU like architecture. Taken together, this tradespace exploration offers insight into the interplay of accuracy, energy, and latency for executing these networks.

More Details

Neural Inspired Computation Remote Sensing Platform

Vineyard, Craig M.; Severa, William M.; Green, Sam G.; Dellana, Ryan A.; Plagge, Mark P.; Hill, Aaron J.

Remote sensing (RS) data collection capabilities are rapidly evolving hyper-spectrally (sensing more spectral bands), hyper-temporally (faster sampling rates) and hyper-spatially (increasing number of smaller pixels). Accordingly, sensor technologies have outpaced transmission capa- bilities introducing a need to process more data at the sensor. While many sophisticated data processing capabilities are emerging, power and other hardware requirements for these approaches on conventional electronic systems place them out of context for resource constrained operational environments. To address these limitations, in this research effort we have investigated and char- acterized neural-inspired architectures to determine suitability for implementing RS algorithms In doing so, we have been able to highlight a 100x performance per watt improvement using neu- romorphic computing as well as developed an algorithmic architecture co-design and exploration capability.

More Details
14 Results
14 Results