The SNL Sierra Mechanics code suite is designed to enable simulation of complex multiphysicsscenarios. The code suite is composed of several specialized applications which can operate either instandalone mode or coupled with each other. Arpeggio is a supported utility that enables loose couplingof the various Sierra Mechanics applications by providing access to Framework services that facilitatethe coupling.
Presented in this document is a portion of the tests that exist in the Sierra Thermal/Fluids verificationtest suite. Each of these tests is run nightly with the Sierra/TF code suite and the results of the testchecked under mesh refinement against the correct analytic result. For each of the tests presented in thisdocument the test setup, derivation of the analytic solution, and comparison of the code results to theanalytic solution is provided.
The SIERRA Low Mach Module: Fuego, henceforth referred to as Fuego, is the key element of theASC fire environment simulation project. The fire environment simulation project is directed atcharacterizing both open large-scale pool fires and building enclosure fires. Fuego represents theturbulent, buoyantly-driven incompressible flow, heat transfer, mass transfer, combustion, soot, andabsorption coefficient model portion of the simulation software.
Recent advances in drilling technology, especially horizontal drilling, have prompted a renewed interest in the use of closed loop geothermal energy extraction systems. Deeply placed closed loops in hot wet or dry rock reservoirs offer the potential to exploit the vast thermal energy in the subsurface. To better understand the potential and limitations for recovering thermal and mechanical energy from closed-loop geothermal systems (CLGS), a collaborative study is underway to investigate an array of system configurations, working fluids, geothermal reservoir characteristics, operational periods, and heat transfer enhancements (Parisi et al., 2021; White et al., 2021). This paper presents numerical results for the heat exchange between a closed loop system (single U-tube) circulating water as the working fluid in a hot rock reservoir. The characteristics of the reservoir are based on the Frontier Observatory for Research in Geothermal Energy (FORGE) site, near Milford Utah. To determine optimal system configurations, a mechanical (electrical) objective function is defined for a bounded optimization study over a specified design space. The objective function includes a surface plant thermal to mechanical energy conversion factor, pump work, and an energy drilling capital cost. To complement the optimization results, detailed parametric studies are also performed. The numerical model is built using the Sandia National Laboratories (SNL) massively parallel Sierra computational framework, while the optimization and parametric studies are driven using the SNL Dakota software package. Together, the optimization and parametric studies presented in this paper will help assess the impact of CLGS parameters (e.g., flow rate, tubing length and diameter, insulation length, etc.) on CLGS performance and optimal energy recovery.
Additive Manufacturing (AM) presents unprecedented opportunities to enable design freedom in parts that are unachievable via conventional manufacturing. However, AM-processed components generally lack the necessary performance metrics for widespread commercial adoption. We present a novel AM processing and design approach using removable heat sink artifacts to tailor the mechanical properties of traditionally low strength and low ductility alloys. The design approach is demonstrated with the Fe-50 at.% Co alloy, as a model material of interest for electromagnetic applications. AM-processed components exhibited unprecedented performance, with a 300 % increase in strength and an order-of-magnitude improvement in ductility relative to conventional wrought material. These results are discussed in the context of product performance, production yield, and manufacturing implications toward enabling the design and processing of high-performance, next-generation components, and alloys.
This work proposes a finite element (FE) analysis workflow to simulate directed energy deposition (DED) additive manufacturing at a macroscopic length scale (i.e. part length scale) and to predict thermal conditions during manufacturing, as well as distortions, strength and residual stresses at the completion of manufacturing. The proposed analysis method incorporates a multi-step FE workflow to elucidate the thermal and mechanical responses in laser engineered net shaping (LENS) manufacturing. For each time step, a thermal element activation scheme captures the material deposition process. Then, activated elements and their associated geometry are analyzed first thermally for heat flow due to radiation, convection, and conduction, and then mechanically for the resulting stresses, displacements, and material property evolution. Simulations agree with experimentally measured in situ thermal measurements for simple cylindrical build geometries, as well as general trends of local hardness distribution and plastic strain accumulation (represented by relative distribution of geometrically necessary dislocations).
Laser engineered net shaping (LENS) is an additive manufacturing process that presents a promising method of creating or repairing metal parts not previously feasible with traditional manufacturing methods. The LENS process involves the directed deposition of metal via a laser power source and a spray of metal powder co-located to create and feed a molten pool (also referred to generically as Directed Energy Deposition, DED). DED technologies are being developed for use in prototyping, repair, and manufacturing across a wide variety of materials including stainless steel, titanium, tungsten carbidecobalt, aluminum, and nickel based superalloys. However, barriers to the successful production and qualification of LENS produced or repaired parts remain. This work proposes a finite element (FE) analysis methodology capable of simulating the LENS process at the continuum length scale (i.e. part length scale). This method incorporates an element activation scheme wherein only elements that exceed the material melt temperature during laser heating are activated and carried through to subsequent analysis steps. Following the initial element activation calculation, newly deposited, or activated elements and the associated geometry, are carried through to thermal and mechanical analyses to calculate heat flow due to radiation, convection, and conduction as well as stresses and displacements. The final aim of this work is to develop a validated LENS process simulation capability that can accurately predict temperature history, final part shape, distribution of strength, microstructural properties, and residual stresses based on LENS process parameters.