Publications

Results 151–200 of 227

Search results

Jump to search filters

Numerical simulations of mounding and submerging flows of shear-thinning jets impinging in a container

Journal of Non-Newtonian Fluid Mechanics

Roberts, Scott A.; Rao, Rekha R.

Continuous jets of non-Newtonian fluids impinging on a fluid surface exhibit instabilities from jet buckling and coiling at low Reynolds numbers to delayed die swell, mounding, and air entrainment at higher Reynolds numbers. Filling containers with complex fluids is an important process for many industries, where the need for high throughput requires operating at high Reynolds numbers. In this regime, air entrainment can produce a visually unappealing product, causing a major quality control issue. Just prior to the onset of air entrainment, however, there exists an ideal filling regime which we term " planar filling," as it is characterized by a relatively flat free surface that maintains its shape over time. In this paper, we create a steady-state, 2-D axisymmetric finite element model to study the transition from planar filling to the onset of air entrainment in a container filling process with generalized-Newtonian fluids. We use this model to explore the operating window for Newtonian and shear-thinning (or, more generally, deformation-rate-thinning) fluids, demonstrating that the flow behavior is characterized by a balance between inertial, viscous, and gravitational forces, as characterized by the Reynolds and Froude numbers. A scaling analysis suggests that the relevant parameters for calculating these dimensionless numbers are located where the jet impacts the liquid surface, and simulations show that the transition from planar filling to air entrainment often occurs when Re~O(10). We found that the bottom and side surfaces of the container drastically influence this transition to entrainment, stabilizing the flow. © 2011 Elsevier B.V.

More Details

Finite element analysis of multilayer coextrusion

Rao, Rekha R.; Mondy, Lisa A.; Schunk, Peter R.; Hopkins, Matthew M.

Multilayer coextrusion has become a popular commercial process for producing complex polymeric products from soda bottles to reflective coatings. A numerical model of a multilayer coextrusion process is developed based on a finite element discretization and two different free-surface methods, an arbitrary-Lagrangian-Eulerian (ALE) moving mesh implementation and an Eulerian level set method, to understand the moving boundary problem associated with the polymer-polymer interface. The goal of this work is to have a numerical capability suitable for optimizing and troubleshooting the coextrusion process, circumventing flow instabilities such as ribbing and barring, and reducing variability in layer thickness. Though these instabilities can be both viscous and elastic in nature, for this work a generalized Newtonian description of the fluid is used. Models of varying degrees of complexity are investigated including stability analysis and direct three-dimensional finite element free surface approaches. The results of this work show how critical modeling can be to reduce build test cycles, improve material choices, and guide mold design.

More Details

Mesoscale to plant-scale models of nuclear waste reprocessing

Rao, Rekha R.; Pawlowski, Roger; Brotherton, Christopher M.; Cipiti, Benjamin B.; Domino, Stefan P.; Jove-Colon, Carlos F.; Moffat, Harry K.; Nemer, Martin; Noble, David R.; O'Hern, Timothy J.

Imported oil exacerabates our trade deficit and funds anti-American regimes. Nuclear Energy (NE) is a demonstrated technology with high efficiency. NE's two biggest political detriments are possible accidents and nuclear waste disposal. For NE policy, proliferation is the biggest obstacle. Nuclear waste can be reduced through reprocessing, where fuel rods are separated into various streams, some of which can be reused in reactors. Current process developed in the 1950s is dirty and expensive, U/Pu separation is the most critical. Fuel rods are sheared and dissolved in acid to extract fissile material in a centrifugal contactor. Plants have many contacts in series with other separations. We have taken a science and simulation-based approach to develop a modern reprocessing plant. Models of reprocessing plants are needed to support nuclear materials accountancy, nonproliferation, plant design, and plant scale-up.

More Details

Mounding of a non-Newtonian jet impinging on a solid substrate

Rao, Rekha R.; Grillet, Anne M.; Schunk, Peter R.

When a fluid jet impinges on a solid substrate, a variety of behaviors may occur around the impact region. One example is mounding, where the fluid enters the impact region faster than it can flow away, forming a mound of fluid above the main surface. For some operating conditions, this mound can destabilize and buckle, entraining air in the mound. Other behaviors include submerging flow, where the jet impinges into an otherwise steady pool of liquid, entraining a thin air layer as it enters the pool. This impact region is one of very high shear rates and as such, complex fluids behave very differently than do Newtonian fluids. In this work, we attempt to characterize this range of behavior for Newtonian and non-Newtonian fluids using dimensionless parameters. We model the fluid as a modified Bingham-Carreau-Yasuda fluid, which exhibits the full range of pseudoplastic flow properties throughout the impact region. Additionally, we study viscoelastic effects through the use of the Giesekus model. Both 2-D and 3-D numerical simulations are performed using a variety of finite element method techniques for tracking the jet interface, including Arbitrary Lagrangian Eulerian (ALE), diffuse level sets, and a conformal decomposition finite element method (CDFEM). The presence of shear-thinning characteristics drastically reduces unstable mounding behavior, yet can lead to air entrainment through the submerging flow regime. We construct an operating map to understand for what flow parameters mounding and submerging flows will occur, and how the fluid rheology affects these behaviors. This study has many implications in high-speed industrial bottle filling applications.

More Details

Multilayer co-extrusion technique for developing high energy density organic devices

Mondy, Lisa A.; Rao, Rekha R.; Bieg, Lothar F.; Schneider, Duane A.; Stavig, Mark E.; Schroeder, John L.; Winter, Michael R.

The purpose of this project is to develop multi-layered co-extrusion (MLCE) capabilities at Sandia National Laboratories to produce multifunctional polymeric structures. Multi-layered structures containing layers of alternating electrical, mechanical, optical, or structural properties can be applied to a variety of potential applications including energy storage, optics, sensors, mechanical, and barrier applications relevant to the internal and external community. To obtain the desired properties, fillers must be added to the polymer materials that are much smaller than the end layer thickness. We developed two filled polymer systems, one for conductive layers and one for dielectric layers and demonstrated the potential for using MLCE to manufacture capacitors. We also developed numerical models to help determine the material and processing parameters that impact processing and layer stability.

More Details

Measurements of wall slip during rise of a physically blown foam

AIP Conference Proceedings

Bourdon, Christopher; Grillet, Anne M.; Mondy, Lisa A.; Rao, Rekha R.

Polymeric foam systems are widely used in industrial applications due to their low weight and abilities to thermally insulate and isolate vibration. However, processing of these foams is still not well understood at a fundamental level. The precursor foam of interest starts off as a liquid phase emulsion of blowing agent in a thermosetting polymer. As the material is heated either by an external oven or by the exothermic reaction from internal polymerization of the suspending fluid, the blowing agent boils to produce gas bubbles and a foamy material. A series of experiments have been performed to allow observation of the foaming process and the collection of temperature, rise rate, and microstructural data. Microfocus video is used in conjunction with particle image velocimetry (PIV) to elucidate the boundary condition at the wall. These data provide input to a continuum level finite element model of the blowing process. PIV is used to measure the slip velocity of foams with a volume fraction range of 0.50 to 0.71. These results are in agreement with theoretical predictions which suggest that at high volume fractions the bubbles would exhibit jamming behavior and slip at the wall. At these volume fractions, the slip velocity profile has a shear profile shape near the side walls and a plug flow shape at the center. The shape of the velocity profile is in agreement with previous experimental work investigating different foam systems. As time increases, the available blowing agent decreases, the volume fraction increases, the viscosity increases, and the average slip velocity decreases, but the slip velocity profile maintains the plug-shear shape. © 2008 American Institute of Physics.

More Details

Foam process models

Rao, Rekha R.; Mondy, Lisa A.; Moffat, Harry K.; Noble, David R.; Notz, Patrick K.; Adolf, Douglas B.

In this report, we summarize our work on developing a production level foam processing computational model suitable for predicting the self-expansion of foam in complex geometries. The model is based on a finite element representation of the equations of motion, with the movement of the free surface represented using the level set method, and has been implemented in SIERRA/ARIA. An empirically based time- and temperature-dependent density model is used to encapsulate the complex physics of foam nucleation and growth in a numerically tractable model. The change in density with time is at the heart of the foam self-expansion as it creates the motion of the foam. This continuum-level model uses an homogenized description of foam, which does not include the gas explicitly. Results from the model are compared to temperature-instrumented flow visualization experiments giving the location of the foam front as a function of time for our EFAR model system.

More Details

Experiments for foam model development and validation

Mondy, Lisa A.; Gorby, Allen D.; Cote, Raymond O.; Castaeda, Jaime N.; Thompson, Kyle; Rao, Rekha R.; Moffat, Harry K.; Kraynik, Andrew M.; Russick, Edward M.; Adolf, Douglas B.; Grillet, Anne M.; Brotherton, Christopher M.; Bourdon, Christopher

A series of experiments has been performed to allow observation of the foaming process and the collection of temperature, rise rate, and microstructural data. Microfocus video is used in conjunction with particle image velocimetry (PIV) to elucidate the boundary condition at the wall. Rheology, reaction kinetics and density measurements complement the flow visualization. X-ray computed tomography (CT) is used to examine the cured foams to determine density gradients. These data provide input to a continuum level finite element model of the blowing process.

More Details

Pressure-driven and free-rise foam flow

Mondy, Lisa A.; Kropka, Jamie M.; Celina, Mathew C.; Rao, Rekha R.; Brotherton, Christopher M.; Bourdon, Christopher; Noble, David R.; Moffat, Harry K.; Grillet, Anne M.; Kraynik, Andrew M.; Leming, Sarah L.

Many weapons components (e.g. firing sets) are encapsulated with blown foams. Foam is a strong lightweight material--good compromise between conflicting needs of structural stability and electronic function. Current foaming processes can lead to unacceptable voids, property variations, cracking, and slipped schedules which is a long-standing issue. Predicting the process is not currently possible because the material is polymerizing and multiphase with changing microstructure. The goals of this project is: (1) Produce uniform encapsulant consistently and improve processability; (2) Eliminate metering issues/voids; (3) Lower residual stresses, exotherm to protect electronics; and (4) Maintain desired properties--lightweight, strong, no delamination/cracking, and ease of removal. The summary of achievements in the first year are: (1) Developed patentable chemical foaming chemistry - TA; (2) Developed persistent non-curing foam for systematic evaluation of fundamental physics of foams--Initial testing of non-curing foam shows that surfactants very important; (3) Identified foam stability strategy using a stacked reaction scheme; (4) Developed foam rheology methodologies and shear apparatuses--Began testing candidates for shear stability; (5) Began development of computational model; and (6) Development of methodology and collection of property measurements/boundary conditions for input to computational model.

More Details

Wetting and free surface flow modeling for potting and encapsulation

Adolf, Douglas B.; Castaeda, Jaime N.; Kraynik, Andrew M.; Noble, David R.; Sun, Amy C.; Cote, Raymond O.; Grillet, Anne M.; Notz, Patrick K.; Brooks, Carlton F.; Givler, Richard C.; Hopkins, Matthew M.; Mondy, Lisa A.; Rao, Rekha R.

As part of an effort to reduce costs and improve quality control in encapsulation and potting processes the Technology Initiative Project ''Defect Free Manufacturing and Assembly'' has completed a computational modeling study of flows representative of those seen in these processes. Flow solutions are obtained using a coupled, finite-element-based, numerical method based on the GOMA/ARIA suite of Sandia flow solvers. The evolution of the free surface is solved with an advanced level set algorithm. This approach incorporates novel methods for representing surface tension and wetting forces that affect the evolution of the free surface. In addition, two commercially available codes, ProCAST and MOLDFLOW, are also used on geometries representing encapsulation processes at the Kansas City Plant. Visual observations of the flow in several geometries are recorded in the laboratory and compared to the models. Wetting properties for the materials in these experiments are measured using a unique flowthrough goniometer.

More Details
Results 151–200 of 227
Results 151–200 of 227