Publications

Results 1–25 of 178

Search results

Jump to search filters

GDSA Repository Systems Analysis Investigations in FY 2023

LaForce, Tara; Basurto, Eduardo B.; Bigler, Lisa; Chang, Kyung W.; Ebeida, Mohamed S.; Jayne, Richard S.; Leone, Rosemary C.; Mariner, Paul M.; Sharpe, Jeff

This report describes specific activities in the Fiscal Year (FY) 2023 associated with the Geologic Disposal Safety Assessment (GDSA) Repository Systems Analysis (RSA) work package funded by the Spent Fuel and Waste Science and Technology (SFWST) Campaign of the U.S. Department of Energy Office of Nuclear Energy (DOE-NE), Office of Spent Fuel and Waste Disposition (SFWD).

More Details

Advanced reactors spent fuel and waste streams disposition strategies

Matteo, Edward N.; Price, Laura L.; Pulido, Ramon P.; Weck, Philippe F.; TACONI, ANNA M.; Mariner, Paul M.; Hadgu, Teklu H.; Park, Heeho D.; Greathouse, Jeffery A.; Sassani, David C.; Alsaed, Halim

This report describes research and development (R&D) activities conducted during Fiscal Year 2023 (FY23) in the Advanced Fuels and Advanced Reactor Waste Streams Strategies work package in the Spent Fuel Waste Science and Technology (SFWST) Campaign supported by the United States (U.S.) Department of Energy (DOE). This report is focused on evaluating and cataloguing Advanced Reactor Spent Nuclear Fuel (AR SNF) and Advanced Reactor Waste Streams (ARWS) and creating Back-end Nuclear Fuel Cycle (BENFC) strategies for their disposition. The R&D team for this report is comprised of researchers from Sandia National Laboratories and Enviro Nuclear Services, LLC.

More Details

Machine Learning Surrogates of a Fuel Matrix Degradation Process Model for Performance Assessment of a Nuclear Waste Repository

Nuclear Technology

Debusschere, Bert D.; Seidl, Daniel T.; Berg, Timothy M.; Chang, Kyung W.; Leone, Rosemary C.; Swiler, Laura P.; Mariner, Paul M.

Spent nuclear fuel repository simulations are currently not able to incorporate detailed fuel matrix degradation (FMD) process models due to their computational cost, especially when large numbers of waste packages breach. The current paper uses machine learning to develop artificial neural network and k-nearest neighbor regression surrogate models that approximate the detailed FMD process model while being computationally much faster to evaluate. Using fuel cask temperature, dose rate, and the environmental concentrations of CO32−, O2, Fe2+, and H2 as inputs, these surrogates show good agreement with the FMD process model predictions of the UO2 degradation rate for conditions within the range of the training data. A demonstration in a full-scale shale repository reference case simulation shows that the incorporation of the surrogate models captures local and temporal environmental effects on fuel degradation rates while retaining good computational efficiency.

More Details

DECOVALEX-2023 Task F Specification (Rev. 9)

LaForce, Tara; Jayne, Richard S.; Leone, Rosemary C.; Mariner, Paul M.; Stein, Emily S.; Nguyen, Son; Frank, Tanja

This report is the revised (Revision 9) Task F specification for DECOVALEX-2023. Task F is a comparison of the models and methods used in deep geologic repository performance assessment. The task proposes to develop a reference case for a mined repository in a fractured crystalline host rock (Task F1) and a reference case for a mined repository in a salt formation (Task F2). Teams may choose to participate in the comparison for either or both reference cases. For each reference case, a common set of conceptual models and parameters describing features, events, and processes that impact performance will be given, and teams will be responsible for determining how best to implement and couple the models. The comparison will be conducted in stages, beginning with a comparison of key outputs of individual process models, followed by a comparison of a single deterministic simulation of the full reference case, and moving on to uncertainty propagation and uncertainty and sensitivity analysis. This report provides background information, a summary of the proposed reference cases, and a staged plan for the analysis.

More Details

Sensitivity analysis of generic deep geologic repository with focus on spatial heterogeneity induced by stochastic fracture network generation

Advances in Water Resources

Brooks, Dusty M.; Swiler, Laura P.; Stein, Emily S.; Mariner, Paul M.; Basurto, Eduardo B.; Portone, Teresa P.; Eckert, Aubrey C.; Leone, Rosemary C.

Geologic Disposal Safety Assessment Framework is a state-of-the-art simulation software toolkit for probabilistic post-closure performance assessment of systems for deep geologic disposal of nuclear waste developed by the United States Department of Energy. This paper presents a generic reference case and shows how it is being used to develop and demonstrate performance assessment methods within the Geologic Disposal Safety Assessment Framework that mitigate some of the challenges posed by high uncertainty and limited computational resources. Variance-based global sensitivity analysis is applied to assess the effects of spatial heterogeneity using graph-based summary measures for scalar and time-varying quantities of interest. Behavior of the system with respect to spatial heterogeneity is further investigated using ratios of water fluxes. This analysis shows that spatial heterogeneity is a dominant uncertainty in predictions of repository performance which can be identified in global sensitivity analysis using proxy variables derived from graph descriptions of discrete fracture networks. New quantities of interest defined using water fluxes proved useful for better understanding overall system behavior.

More Details

GDSA Framework Development and Process Model Integration FY2022

Mariner, Paul M.; Debusschere, Bert D.; Fukuyama, David E.; Harvey, Jacob H.; LaForce, Tara; Leone, Rosemary C.; Laros, James H.; Swiler, Laura P.; TACONI, ANNA M.

The Spent Fuel and Waste Science and Technology (SFWST) Campaign of the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE), Office of Spent Fuel & Waste Disposition (SFWD) is conducting research and development (R&D) on geologic disposal of spent nuclear fuel (SNF) and high-level nuclear waste (HLW). A high priority for SFWST disposal R&D is disposal system modeling (Sassani et al. 2021). The SFWST Geologic Disposal Safety Assessment (GDSA) work package is charged with developing a disposal system modeling and analysis capability for evaluating generic disposal system performance for nuclear waste in geologic media. This report describes fiscal year (FY) 2022 advances of the Geologic Disposal Safety Assessment (GDSA) performance assessment (PA) development groups of the SFWST Campaign. The common mission of these groups is to develop a geologic disposal system modeling capability for nuclear waste that can be used to assess probabilistically the performance of generic disposal options and generic sites. The modeling capability under development is called GDSA Framework (pa.sandia.gov). GDSA Framework is a coordinated set of codes and databases designed for probabilistically simulating the release and transport of disposed radionuclides from a repository to the biosphere for post-closure performance assessment. Primary components of GDSA Framework include PFLOTRAN to simulate the major features, events, and processes (FEPs) over time, Dakota to propagate uncertainty and analyze sensitivities, meshing codes to define the domain, and various other software for rendering properties, processing data, and visualizing results.

More Details

GDSA Repository Systems Analysis Investigations in FY2022

LaForce, Tara; Basurto, Eduardo B.; Chang, Kyung W.; Ebeida, Mohamed S.; Eymold, William; Faucett, Christopher F.; Jayne, Richard S.; Kucinski, Nicholas; Leone, Rosemary C.; Mariner, Paul M.; Laros, James H.

The Spent Fuel and Waste Science and Technology (SFWST) Campaign of the U.S. Department of Energy Office of Nuclear Energy, Office of Spent Fuel and Waste Disposition (SFWD), has been conducting research and development on generic deep geologic disposal systems (i.e., geologic repositories). This report describes specific activities in the Fiscal Year (FY) 2022 associated with the Geologic Disposal Safety Assessment (GDSA) Repository Systems Analysis (RSA) work package within the SFWST Campaign. The overall objective of the GDSA RSA work package is to develop generic deep geologic repository concepts and system performance assessment (PA) models in several host-rock environments, and to simulate and analyze these generic repository concepts and models using the GDSA Framework toolkit, and other tools as needed.

More Details

Uncertainty and Sensitivity Analysis Methods and Applications in the GDSA Framework (FY2022)

Swiler, Laura P.; Basurto, Eduardo B.; Brooks, Dusty M.; Eckert, Aubrey C.; Leone, Rosemary C.; Mariner, Paul M.; Portone, Teresa P.; Laros, James H.

The Spent Fuel and Waste Science and Technology (SFWST) Campaign of the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE), Office of Fuel Cycle Technology (FCT) is conducting research and development (R&D) on geologic disposal of spent nuclear fuel (SNF) and high-level nuclear waste (HLW). Two high priorities for SFWST disposal R&D are design concept development and disposal system modeling. These priorities are directly addressed in the SFWST Geologic Disposal Safety Assessment (GDSA) control account, which is charged with developing a geologic repository system modeling and analysis capability, and the associated software, GDSA Framework, for evaluating disposal system performance for nuclear waste in geologic media. GDSA Framework is supported by SFWST Campaign and its predecessor the Used Fuel Disposition (UFD) campaign.

More Details

PFLOTRAN Development FY2022

Nole, Michael A.; Beskardes, G.D.; Fukuyama, David E.; Leone, Rosemary C.; Mariner, Paul M.; Park, Heeho D.; Paul, Matthew J.; Laros, James H.; Hammond, Glenn E.; Lichtner, Peter C.

The Spent Fuel & Waste Science and Technology (SFWST) Campaign of the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE), Office of Spent Fuel & Waste Disposition (SFWD) is conducting research and development (R&D) on geologic disposal of spent nuclear fuel (SNF) and high-level nuclear waste (HLW). A high priority for SFWST disposal R&D is to develop a disposal system modeling and analysis capability for evaluating disposal system performance for nuclear waste in geologic media. This report describes fiscal year (FY) 2022 accomplishments by the PFLOTRAN Development group of the SFWST Campaign. The mission of this group is to develop a geologic disposal system modeling capability for nuclear waste that can be used to probabilistically assess the performance of generic disposal concepts. In FY 2022, the PFLOTRAN development team made several advancements to our software infrastructure, code performance, and process modeling capabilities.

More Details

Results of Re-evaluation of FEPs Related to Implementing the ABD Glass Program

Price, Laura L.; Alsaed, Halim; Prouty, Jeralyn L.; Rogers, Ralph D.; Ebert, William; Hadgu, Teklu H.; Mariner, Paul M.

More Details

Evaluating Geologic Disposal Pathways for Advanced Reactor Spent Fuels

Proceedings of the International High-Level Radioactive Waste Management Conference, IHLRWM 2022, Embedded with the 2022 ANS Winter Meeting

Sassani, David C.; Price, Laura L.; Park, Heeho D.; Matteo, Edward N.; Mariner, Paul M.

As presented above, because similar existing DOE-managed SNF (DSNF) from previous reactors have been evaluated for disposal pathways, we use this knowledge/experience as a broad reference point for initial technical bases for preliminary dispositioning of potential AR SNF. The strategy for developing fully-formed gap analyses for AR SNF entails the primary step of first obtaining all the defining characteristics of the AR SNF waste stream from the AR developers. Utilizing specific and accurate information/data for developing the potential disposal inventory to be evaluated is a key principle start for success. Once the AR SNF waste streams are defined, the initial assessments would be based on comparison to appropriate existing SNF/waste forms previously analyzed (prior experience) to make a determination on feasibility of direct disposal, or the need to further evaluate due to differences specific to the AR SNF. Assessments of criticality potential and controls would also be performed to assess any R&D gaps to be addressed in that regard as well. Although some AR SNF may need additional treatment for waste form development, these aspects may also be constrained and evaluated within the context of disposal options, including detailed gap analysis to identify further R&D activities to close the gaps.

More Details

Sensitivity and Uncertainty Analysis of FMD Model Choice for a Generic Crystalline Repository

Proceedings of the International High-Level Radioactive Waste Management Conference, IHLRWM 2022, Embedded with the 2022 ANS Winter Meeting

Brooks, Dusty M.; Swiler, Laura P.; Mariner, Paul M.; Portone, Teresa P.; Basurto, Eduardo B.; Leone, Rosemary C.

This paper applies sensitivity and uncertainty analysis to compare two model alternatives for fuel matrix degradation for performance assessment of a generic crystalline repository. The results show that this model choice has little effect on uncertainty in the peak 129I concentration. The small impact of this choice is likely due to the higher importance of uncertainty in the instantaneous release fraction and differences in epistemic uncertainty between the alternatives.

More Details
Results 1–25 of 178
Results 1–25 of 178