Publications

Results 1–25 of 33

Search results

Jump to search filters

Electrode plasma formation and melt in Z-pinch accelerators

Physical Review Accelerators and Beams

Bennett, Nichelle L.; Welch, D.R.; Cochrane, Kyle C.; Leung, Kevin L.; Thoma, C.; Cuneo, M.E.; Laros, James H.

Recent studies of power flow and particle transport in multi-MA pulsed-power accelerators demonstrate that electrode plasmas may reduce accelerator efficiency by shunting current upstream from the load. The detailed generation and evolution of these electrode plasmas are examined here using fully relativistic, Monte Carlo particle-in-cell (PIC) and magnetohydrodynamic (MHD) simulations over a range of peak currents (8–48 MA). The PIC calculations, informed by vacuum science, describe the electrode surface breakdown and particle transport prior to electrode melt. The MHD calculations show the bulk electrode evolution during melt. The physical description provided by this combined study begins with the rising local magnetic field that increases the local electrode surface temperature. This initiates the thermal desorption of contaminants from the electrode surface, with contributions from atoms outgassing from the bulk metal. The contaminants rapidly ionize forming a 1015-1018 cm-3 plasma that is effectively resistive while weakly collisional because it is created within, and rapidly penetrated by, a strong magnetic field (> 30 T). Prior to melting, the density of this surface plasma is limited by the concentration of absorbed contaminants in the bulk (~1019 cm-3 for hydrogen), its diffusion, and ionization. Eventually, the melting electrodes form a conducting plasma (1021-1023 cm-3) that experiences j × B compression and a typical decaying magnetic diffusion profile. This physical sequence ignores the transport of collisional plasmas of 1019 cm-3 which may arise from electrode defects and associated instabilities. Nonetheless, this picture of plasma formation and melt may be extrapolated to higher-energy pulsed-power systems.

More Details

Resolution requirements for energy conservation in kinetic plasma simulations

Bennett, Nichelle L.; Welch, Dale R.

The kinetic codes used to model the coupled dynamics of electromagnetic fields and charged particle transport have requirements for spatial, temporal, and charge resolution. These requirements may vary by the solution technique and scope of the problem. In this report, we investigate the resolution limits in the energy-conserving implicit particle-in-cell code CHICAGO. This report has the narrow aim of determining the maximum acceptable grid spacing for the dense plasmas generated in models of z-pinch target gases and power-flow electrode plasmas. In the 2D sample problem, the plasma drifts without external forces with velocity of 10 cm/µs. Simulations are scaled by plasma density to maintain uniform strides across the plasma and from the plasma to the boundaries. Additionally, the cloud-in-cell technique is used with 400 particles per cell and Δt = 0.85× the Courant limit. For the linear cloud distribution, the criterion for conserving energy is ΔE/Etot < 0.01 for 50,000 time steps. The grid resolution is determined to crudely be Δx ≲ 3ls, where ls is the electron collisionless skin depth. For the second-order cloud distribution the criterion is ΔE/Etot < 0.005 yielding Δx ≤ 15ls. These scalings are functions of the chosen vd, Δt, particles-per-cell, and number of steps.

More Details

Code Development Supporting a Non-Thermal Source of High Fluence Warm X-Ray

Bennett, Nichelle L.; Welch, Dale R.

A six-month research effort has advanced the hybrid kinetic-fluid modeling capability required for developing non-thermal warm x-ray sources on Z. The three particle treatments of quasi-neutral, multi-fluid, and kinetic are demonstrated in 1D simulations of an Ar gas puff. The simulations determine required resolutions for the advanced implicit solution techniques and debug hybrid particle treatments with equation-of-state and radiation transport. The kinetic treatment is used in preliminary analysis of the non-Maxwellian nature of a gas target. It is also demonstrates the sensitivity of the cyclotron and collision frequencies in determining the transition from thermal to non-thermal particle populations. Finally, a 2D Ar gas puff simulation of a Z shot demonstrates the readiness to proceed with realistic target configurations. The results put us on a very firm footing to proceed to a full LDRD which includes continued development transition criteria and x-ray yield calculation.

More Details

A software environment for effective reliability management for pulsed power design

Reliability Engineering and System Safety

Robinson, Allen C.; Swan, Matthew S.; Smith, Thomas M.; Bennett, Nichelle L.; Drake, Richard R.; Hooper, Russell H.; Laity, George R.

The reliable design of magnetically insulated transmission lines (MITLs) for very high current pulsed power machines must be accomplished in the future by utilizing a variety of sophisticated modeling tools. The complexity of the models required is high and the number of sub-models and approximations large. The potential for significant analyst error using a single tool is large, with possible reliability issues associated with the plasma modeling tools themselves or the chosen approach by the analyst to solve a given problem. We report on a software infrastructure design that provides a workable framework for building self-consistent models and constraining feedback to limit analyst error. The framework and associated tools aid the development of physical intuition, the development of increasingly sophisticated models, and the comparison of performance results. The work lays the computational foundation for designing state-of-the-art pulsed-power experiments. The design and useful features of this environment are described. We discuss the utility of the Git source code management system and a GitLab interface for use in project management that extends beyond software development tasks.

More Details

Magnetized particle transport in multi-MA accelerators

Physical Review Accelerators and Beams

Bennett, Nichelle L.; Welch, Dale R.; Laity, George R.; Rose, David V.; Cuneo, M.E.

Kinetic simulations of Sandia National Laboratories' Z machine are conducted to understand particle transport in the highly magnetized environment of a multi-MA accelerator. Joule heating leads to the rapid formation of electrode surface plasmas. These plasmas are implicated in reducing accelerator efficiency by diverting current away from the load [M.R. Gomez et al., Phys. Rev. Accel. Beams 20, 010401 (2017)PRABCJ2469-988810.1103/PhysRevAccelBeams.20.010401, N. Bennett et al., Phys. Rev. Accel. Beams 22, 120401 (2019)PRABCJ2469-988810.1103/PhysRevAccelBeams.22.120401]. The fully-relativistic, electromagnetic simulations presented in this paper show that particles emitted in a space-charge-limited manner, in the absence of plasma, are magnetically insulated. However, in the presence of plasma, particles are transported across the magnetic field in spite of being only weakly collisional. The simulated cross-gap currents are well-approximated by the Hall current in the generalized Ohm's law. The Hall conductivities are calculated using the simulated particle densities and energies, and the parameters that increase the Hall current are related to transmission line inductance. Analogous to the generalized Ohm's law, we extend the derivation of the magnetized diffusion coefficients to include the coupling of perpendicular components. These yield a Hall diffusion rate, which is equivalent to the empirical Bohm diffusion.

More Details

Towards Predictive Plasma Science and Engineering through Revolutionary Multi-Scale Algorithms and Models (Final Report)

Laity, George R.; Robinson, Allen C.; Cuneo, M.E.; Alam, Mary K.; Beckwith, Kristian B.; Bennett, Nichelle L.; Bettencourt, Matthew T.; Bond, Stephen D.; Cochrane, Kyle C.; Criscenti, Louise C.; Cyr, Eric C.; Laros, James H.; Drake, Richard R.; Evstatiev, Evstati G.; Fierro, Andrew S.; Gardiner, Thomas A.; Laros, James H.; Goeke, Ronald S.; Hamlin, Nathaniel D.; Hooper, Russell H.; Koski, Jason K.; Lane, James M.; Larson, Steven R.; Leung, Kevin L.; McGregor, Duncan A.; Miller, Philip R.; Miller, Sean M.; Ossareh, Susan J.; Phillips, Edward G.; Simpson, Sean S.; Sirajuddin, David S.; Smith, Thomas M.; Swan, Matthew S.; Thompson, Aidan P.; Tranchida, Julien G.; Bortz-Johnson, Asa J.; Welch, Dale R.; Russell, Alex M.; Watson, Eric D.; Rose, David V.; McBride, Ryan D.

This report describes the high-level accomplishments from the Plasma Science and Engineering Grand Challenge LDRD at Sandia National Laboratories. The Laboratory has a need to demonstrate predictive capabilities to model plasma phenomena in order to rapidly accelerate engineering development in several mission areas. The purpose of this Grand Challenge LDRD was to advance the fundamental models, methods, and algorithms along with supporting electrode science foundation to enable a revolutionary shift towards predictive plasma engineering design principles. This project integrated the SNL knowledge base in computer science, plasma physics, materials science, applied mathematics, and relevant application engineering to establish new cross-laboratory collaborations on these topics. As an initial exemplar, this project focused efforts on improving multi-scale modeling capabilities that are utilized to predict the electrical power delivery on large-scale pulsed power accelerators. Specifically, this LDRD was structured into three primary research thrusts that, when integrated, enable complex simulations of these devices: (1) the exploration of multi-scale models describing the desorption of contaminants from pulsed power electrodes, (2) the development of improved algorithms and code technologies to treat the multi-physics phenomena required to predict device performance, and (3) the creation of a rigorous verification and validation infrastructure to evaluate the codes and models across a range of challenge problems. These components were integrated into initial demonstrations of the largest simulations of multi-level vacuum power flow completed to-date, executed on the leading HPC computing machines available in the NNSA complex today. These preliminary studies indicate relevant pulsed power engineering design simulations can now be completed in (of order) several days, a significant improvement over pre-LDRD levels of performance.

More Details

Numerical simulations of enhanced ion current losses in the inner magnetically insulated transmission line of the Z accelerator

Physical Review Accelerators and Beams

Rose, David V.; Waisman, Eduardo M.; Desjarlais, Michael P.; Cuneo, M.E.; Hutsel, Brian T.; Welch, Dale R.; Bennett, Nichelle L.; Laity, George R.

Two-dimensional electromagnetic (EM) particle-in-cell (PIC) simulations of a radial magnetically-insulated-transmission-line are presented and compared to the model of E. M. Waisman, M. P. Desjarlais, and M. E. Cuneo [Phys. Rev. Accel. Beams 22, 030402 (2019) in the “high-enhancement” (WDC-HE) limit. The simulations use quasi-equilibrium current and voltage values based on the Sandia National Laboratories Z accelerator, with prescribed injection of an electron sheath that gives electron density profiles qualitatively similar to those used in the WDC-HE model. We find that the WDC-HE model accurately predicts the quasiequilibrium ion current losses in the EM PIC simulations for a wide range of current and voltage values. For the case of two ion species where one is magnetically insulated by the ambient magnetic field and the other is not, the charge of the lighter insulated species in the anode-cathode gap can modify the electric field profile, reducing the ion current density enhancement for the heavier ion species. On the other hand, for multiple ion species, when the lighter ions are not magnetically insulated and are a significant fraction of the anode plasma, they dominate the current loss, producing loss currents which are a significant fraction of the lighter ion WDC values. The observation of this effect in the present work is new to the field and may significantly impact the analysis of ion current losses in the Z machine inner MITL and convolute.

More Details
Results 1–25 of 33
Results 1–25 of 33