Investigation of SF6 Alternatives in Spark Gap Switches for GWP Reduction
Investigation of SF6 Alternatives in Spark Gap Switches for GWP Reduction
Investigation of SF6 Alternatives in Spark Gap Switches for GWP Reduction
Physics of Plasmas
Electric fields are commonplace in plasmas and affect transport by driving currents and, in some cases, instabilities. The necessary condition for instability in collisionless plasmas is commonly understood to be described by the Penrose criterion, which quantifies a sufficient relative drift between different populations of particles that must be present for wave amplification via inverse Landau damping. For example, electric fields generate drifts between electrons and ions that can excite the ion-acoustic instability. Here, we use particle-in-cell simulations and linear stability analysis to show that the electric field can drive a fundamentally different type of kinetic instability, named the electron-field instability. This instability excites electron plasma waves with wavelengths ≳30λDe, has a growth rate that is proportional to the electric field strength, and does not require a relative drift between electrons and ions. The Penrose criterion does not apply when accounting for the electric field. Furthermore, the large value of the observed frequency, near the electron plasma frequency, further distinguishes it from the standard ion-acoustic instability, which oscillates near the ion plasma frequency. The ubiquity of macroscopic electric fields in quasineutral plasmas suggests that this instability is possible in a host of systems, including low-temperature and space plasmas. In fact, damping from neutral collisions in such systems is often not enough to completely damp the instability, adding to the robustness of the instability across plasma conditions.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Journal of Applied Physics
Cesium vapor thermionic converters are an attractive method of converting high-temperature heat directly to electricity, but theoretical descriptions of the systems have been difficult due to the multi-step ionization of Cs through inelastic electron-neutral collisions. This work presents particle-in-cell simulations of these converters, using a direct simulation Monte Carlo collision model to track 52 excited states of Cs. These simulations show the dominant role of multi-step ionization, which also varies significantly based on both the applied voltage bias and pressure. The electron energy distribution functions are shown to be highly non-Maxwellian in the cases analyzed here. A comparison with previous approaches is presented, and large differences are found in ionization rates due especially to the fact that previous approaches have assumed Maxwellian electron distributions. Finally, an open question regarding the nature of the plasma sheaths in the obstructed regime is discussed. The one-dimensional simulations did not produce stable obstructed regime operation and thereby do not support the double-sheath hypothesis.
Proceedings - International Symposium on Discharges and Electrical Insulation in Vacuum, ISDEIV
This presentation describes a new effort to better understand insulator flashover in high current, high voltage pulsed power systems. Both experimental and modeling investigations are described. Particular emphasis is put upon understand flashover that initiate in the anode triple junction (anode-vacuum-dielectric).
Spectrochimica Acta - Part B Atomic Spectroscopy
Single particle aerosol mass spectrometry (SPAMS), an analytical technique for measuring the size and composition of individual micron-scale particles, is capable of analyzing atmospheric pollutants and bioaerosols much more efficiently and with more detail than conventional methods which require the collection of particles onto filters for analysis in the laboratory. Despite SPAMS’ demonstrated capabilities, the primary mechanisms of ionization are not fully understood, which creates challenges in optimizing and interpreting SPAMS signals. In this paper, we present a well-stirred reactor model for the reactions involved with the laser-induced vaporization and ionization of an individual particle. The SPAMS conditions modeled in this paper include a 248 nm laser which is pulsed for 8 ns to vaporize and ionize each particle in vacuum. The ionization of 1 μm, spherical Al particles was studied by approximating them with a 0-dimensional plasma chemistry model. The primary mechanism of absorption of the 248 nm photons was pressure-broadened direct photoexcitation to Al(y2D). Atoms in this highly excited state then undergo superelastic collisions with electrons, heating the electrons and populating the lower energy excited states. We found that the primary ionization mechanism is electron impact ionization of various excited state Al atoms, especially Al(y2D). Because the gas expands rapidly into vacuum, its temperature decreases rapidly. The rate of three-body recombination (e− + e− + Al+ → Al + e−) increases at low temperature, and most of the electrons and ions produced recombine within several μs of the laser pulse. The importance of the direct photoexcitation indicates that the relative peak heights of different elements in SPAMS mass spectra may be sensitive to the available photoexcitation transitions. The effects of laser intensity, particle diameter, and expansion dynamics are also discussed.
Abstract not provided.
IEEE Transactions on Plasma Science
Surface flashover in vacuum imposes a substantial physical limit on modern, large-scale pulsed power. One of the ramifications is a minimum size requirement for new machines, which in itself becomes a hard barrier to the modernization and improvement of existing infrastructure. Pulsed power topologies require the physical mechanisms of both anode- and cathode-initiated flashover to be considered. Originally, the geometrical implications of field emission at the cathode triple junction (CTJ) motivated the usage of configurations that avoid electrons impinging on the insulating material. This will largely suppress the cathode-initiated flashover, which is best described by the secondary electron avalanche mechanism, gas desorption, and final breakdown in the desorbed gas. It depends on the cascade growth of a conducting plasma along the length of the insulator from the cathode. Mitigating the cathode-initiated flashover typically comes at the cost of a significant field enhancement at the anode triple junction (ATJ). In a typical implementation, the anode field may be three times higher than the cathode field for a given voltage, making the corresponding anode-initiated flashover much more common than otherwise. In the case of pulsed, anode-initiated flashover, experimental evidence suggests that charge is directly extracted from the insulator resulting in the insulator taking on a net positive charge advancing the anode potential. Along with accompanying gas desorption from the surface, the potential will then propagate from the anode toward the cathode until the effective length of the gap is sufficiently reduced to support flashover. The underlying physical mechanisms of cathode- and anode-directed flashover are discussed in light of previously gathered experimental data and recent experiments with pulsed, high-gradient, anode-initiated flashover.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Cathode-directed streamer evolution in near atmospheric air is modeled in 3D pin-to-plane geometries using a 3D kinetic Particle-In-Cell (PIC) code that simulates particle-particle collisions via the Direct Simulation Monte Carlo (DSMC) method. Due to the computational challenges associated with a complete 360° volumetric domain, a practical alternative was achieved using a wedge domain and a range of azimuthal angles was explored (5°, 15°, 30°, and 45°) to study possible effects on the streamer growth and propagation due to the finite wedge angle. A DC voltage of 6 kV is administered to a hemispherical anode of radius 100 μm, with a planar cathode held at ground potential, generating an over-volted state with an electric field of 4 MV/m across a 1500 μm gap. The domain is seeded with an initial ion and electron density of 1018 m-3 at 1 eV temperature confined to a spherical region of radius 100 μm centered at the tip of the anode. The air chemistry model [1] includes standard Townsend breakdown mechanisms (electron-neutral elastic, excitation, ionization, attachment, and detachment collision chemistry and secondary electron emission) as well as streamer mechanisms (photoionization and ion-neutral collisions) via tracking excited state neutrals which can then either quench via collisions or spontaneously emit a photon based on specific Einstein-A coefficients [2, 3]. In this work, positive streamer dynamics are formally quantified for each wedge angle in terms of electron velocity and density as temporal functions of coordinates r, Φ, and z. Applying a random plasma seed for each simulation, particles of interest are tracked with near femtosecond temporal resolution out to 1.4 ns and spatially binned. This process is repeated six times and results are averaged. Prior 2D studies have shown that the reduced electric field, E/n, can significantly impact streamer evolution [4]. We extend the analysis to 3D wedge geometries, to limit computational costs, and examine the wedge angle’s effect on streamer branching, propagation, and velocity. Results indicate that the smallest wedge angle that produced an acceptably converged solution is 30°. The potential effects that a mesh, when under-resolved with respect to the Debye length, can impart on streamer dynamics and numerical heating were not investigated, and we explicitly state here that the smallest cell size was approximately 10 times the minimum λD in the streamer channel at late times. This constraint on cell size was the result of computational limitations on total mesh count.
Plasma Sources Science and Technology
Particle-in-cell simulations are used to study how neutral pressure influences plasma properties at the sheath edge. The high rate of ion–neutral collisions at pressures above several mTorr are found to cause a decrease in the ion velocity at the sheath edge (collisional Bohm criterion), a decrease in the edge-to-center density ratio (hl factor), and an increase in the sheath width and sheath potential drop. A comparison with existing analytic models generally indicates favorable agreement, but with some distinctions. One is that models for the hl factor need to be made consistent with the collisional Bohm criterion. With this and similar corrections, a comprehensive fluid-based model of the plasma boundary transition is constructed that compares well with the simulation results.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.