Publications

Results 51–100 of 105

Search results

Jump to search filters

Strategic Petroleum Reserve Cemented Annulus Modeling and Testing; FY16 Progress

Nemer, Martin; Kuhlman, Kristopher L.; Newell, Pania; Bettin, Giorgia

Sandia National Laboratories has begun developing modeling and analysis tools of flow through the cemented portion of a cemented annulus in a Strategic Petroleum Reserve (SPR) well since August of 2015. The goal of this work is to develop models and testing procedures to diagnose the health of cemented annuli at SPR sites. In Fiscal Year 2016 (FY16), we have developed several tests and associated models that we believe are sufficient for this purpose. This report outlines progress made in FY16 and future work.

More Details

Controls on Incomplete Mixing of Injected Raw Water and Brine in Strategic Petroleum Reserve Salt Caverns

Heath, Jason E.; Nemer, Martin; Chojnicki, Kirsten

Mixing of injected raw (undersaturated) water with brine in Strategic Petroleum Reserve (SPR) salt caverns affects the shape of cavern walls due to leaching. Cavern shape impacts cavern geomechanical stability and available volume for oil storage. Raw water injection occurs during initial solution mining of caverns, remedial leaching of caverns, and oil drawdown. Of interest are factors that control the degree of raw water-brine mixing and thereby the concentration of the aqueous fluid mixture that contacts the salt cavern walls. It is hypothesized that poorly-mixed fresh water could potentially cause undesirable and non-uniform leaching , for example, if buoyant poorly-mixed fresh water collects and preferentially leaches under the oil-brine interface . This report presents current understanding of controls on incomplete-to-complete mixing of raw water and brine, focusing on implications for SPR cavern leaching. In the context of mixing, we review the following: SPR leaching operations; models of leaching; field measurements of leaching and cavern shapes; and previous laboratory experiments of mixing and /or leaching performed at Sandia National Laboratories. We present recent laboratory experiments in 2014-2016 that focused explicitly on understanding controls of poor-to-well mixed conditions. We find that well-mixed conditions are expected for typical operating conditions of the SPR.

More Details

Wireless temperature sensing using permanent magnets for multiple points undergoing repeatable motions

ASME 2016 Dynamic Systems and Control Conference, DSCC 2016

Mazumdar, Yi C.; Guba, Oksana; Brooks, Carlton F.; Roberts, Christine; Van Bloemen Waanders, Bart; Nemer, Martin

Temperature monitoring is essential in automation, mechatronics, robotics and other dynamic systems. Wireless methods which can sense multiple temperatures at the same time without the use of cables or slip-rings can enable many new applications. A novel method utilizing small permanent magnets is presented for wirelessly measuring the temperature of multiple points moving in repeatable motions. The technique utilizes linear least squares inversion to separate the magnetic field contributions of each magnet as it changes temperature. The experimental setup and calibration methods are discussed. Initial experiments show that temperatures from 5 to 50 °C can be accurately tracked for three neodymium iron boron magnets in a stationary configuration and while traversing in arbitrary, repeatable trajectories. This work presents a new sensing capability that can be extended to tracking multiple temperatures inside opaque vessels, on rotating bearings, within batteries, or at the tip of complex endeffectors.

More Details

Rheological and Mechanical Property Measurements of PMDI Foam at Elevated Temperatures

Nemer, Martin; Brooks, Carlton F.; Shelden, Bion; Soehnel, Melissa; Barringer, David A.

A study was undertaken to determine the viscosity of liquefied 20 lb/ft3 poly methylene diisocyanate (PMDI) foam and the stress required to puncture solid PMDI foam at elevated temperatures. For the rheological measurements the foam was a priori liquefied in a pressure vessel such that the volatiles were not lost in the liquefaction process. The viscosity of the liquefied PMDI foam was found to be Newtonian with a power law dependence on temperature log10(μ/Pa s) = 20.6 – 9.5 log10(T/°C) for temperatures below 170 °C. Above 170 °C, the viscosity was in the range of 0.3 Pa s which is close to the lower measurement limit (≈ 0.1 Pa s) of the pressurized rheometer. The mechanical pressure required to break through 20lb/ft3 foam was 500-800 psi at temperatures from room temperature up to 180 °C. The mechanical pressure required to break through 10 lb/ft3 was 170-300 psi at temperatures from room temperature up to 180 °C. We have not been able to cause gas to break through the 20 lb/ft3 PMDI foam at gas pressures up to 100 psi.

More Details

Material Analysis for a Fire Assessment

Brown, Alexander L.; Nemer, Martin

This report consolidates technical information on several materials and material classes for a fire assessment. The materials include three polymeric materials, wood, and hydraulic oil. The polymers are polystyrene, polyurethane, and melamine- formaldehyde foams. Samples of two of the specific materials were tested for their behavior in a fire - like environment. Test data and the methods used to test the materials are presented. Much of the remaining data are taken from a literature survey. This report serves as a reference source of properties necessary to predict the behavior of these materials in a fire.

More Details

Drop mass transfer in a microfluidic chip compared to a centrifugal contactor

AIChE Journal

Roberts, Christine; Brooks, Carlton F.; Hughes, Lindsey; Wyatt, Nicholas B.; Rao, Rekha R.; Nemer, Martin

A model system was developed for enabling a multiscale understanding of centrifugal-contactor liquid–liquid extraction.The system consisted of Nd(III) + xylenol orange in the aqueous phase buffered to pH =5.5 by KHP, and dodecane + thenoyltrifluroroacetone (HTTA) + tributyphosphate (TBP) in the organic phase. Diffusion constants were measured for neodymium in both the organic and aqueous phases, and the Nd(III) partition coefficients were measured at various HTTA and TBP concentrations. A microfluidic channel was used as a high-shear model environment to observe mass-transfer on a droplet scale with xylenol orange as the aqueous-phase metal indicator; mass-transfer rates were measured quantitatively in both diffusion and reaction limited regimes on the droplet scale. Lastly, the microfluidic results were comparable to observations made for the same system in a laboratory scale liquid–liquid centrifugal contactor, indicating that single drop microfluidic experiments can provide information on mass transfer in complicated flows and geometries.

More Details

Circulation within confined droplets in Hele-Shaw channels

Physics of Fluids

Roberts, Christine; Roberts, Scott A.; Nemer, Martin; Rao, Rekha R.

Liquid droplets flowing through a rectangular microfluidic channel develop a vortical flow field due to the presence of shear forces from the surrounding fluid. In this paper, we present an experimental and computational study of droplet velocities and internal flow patterns in a rectangular pressure-driven flow for droplet diameters ranging from 0.1 to 2 times the channel height. Our study shows excellent agreement with asymptotic predictions of droplet and interfacial velocities for infinitesimally small droplets. As the droplet diameter nears the size of the channel height, the droplet velocity slows significantly, and the changing external flow field causes a qualitative change in the location of internal vortices. This behavior is relevant for future studies of mass transfer in microfluidic devices. © 2014 AIP Publishing LLC.

More Details

Brine-in-crude-oil emulsions at the Strategic Petroleum Reserve

Nemer, Martin; Lord, David; Macdonald, Terry L.

Metastable water-in-crude-oil emulsion formation could occur in a Strategic Petroleum Reserve (SPR) cavern if water were to flow into the crude-oil layer at a sufficient rate. Such a situation could arise during a drawdown from a cavern with a broken-hanging brine string. A high asphaltene content (> 1.5 wt %) of the crude oil provides the strongest predictor of whether a metastable water-in-crude-oil emulsion will form. However there are many crude oils with an asphaltene content > 1.5 wt % that don't form stable emulsions, but few with a low asphaltene content that do form stable emulsions. Most of the oils that form stable emulsions are "sour" by SPR standards indicating they contain total sulfur > 0.50 wt %.

More Details

Comparison of monodisperse droplet generation in flow-focusing devices with hydrophilic and hydrophobic surfaces

Lab on a Chip

Roberts, Christine C.; Rao, Rekha R.; Loewenberg, Michael; Brooks, Carlton F.; Galambos, Paul C.; Grillet, Anne M.; Nemer, Martin

A thin flow-focusing microfluidic channel is evaluated for generating monodisperse liquid droplets. The microfluidic device is used in its native state, which is hydrophilic, or treated with OTS to make it hydrophobic. Having both hydrophilic and hydrophobic surfaces allows for creation of both oil-in-water and water-in-oil emulsions, facilitating a large parameter study of viscosity ratios (droplet fluid/continuous fluid) ranging from 0.05 to 96 and flow rate ratios (droplet fluid/continuous fluid) ranging from 0.01 to 2 in one geometry. The hydrophilic chip provides a partially-wetting surface (contact angle less than 90°) for the inner fluid. This surface, combined with the unusually thin channel height, promotes a flow regime where the inner fluid wets the top and bottom of the channel in the orifice and a stable jet is formed. Through confocal microscopy, this fluid stabilization is shown to be highly influenced by the contact angle of the liquids in the channel. Non-wetting jets undergo breakup and produce drops when the jet is comparable to or smaller than the channel thickness. In contrast, partially-wetting jets undergo breakup only when they are much smaller than the channel thickness. Drop sizes are found to scale with a modified capillary number based on the total flow rate regardless of wetting behavior. © The Royal Society of Chemistry.

More Details

Toward application of conformal decomposition finite elements to non-colloidal particle suspensions

International Journal for Numerical Methods in Fluids

Lechman, Jeremy B.; Nemer, Martin; Noble, David R.

Particle suspensions play an important role in many engineering applications, yet their behavior in a number of respects remains poorly understood. In conjunction with careful experiments, modeling and simulation of these systems can provide key insight into their complex behavior. However, these two-phase systems pose the challenge of simultaneously, accurately, and efficiently capturing the complex geometric structure, kinematics, and dynamics of the particulate discrete phase and the discontinuities it introduces into the variables (e.g., velocity, pressure, density) of the continuous phase. To this end, a new conformal decomposition finite element method (CDFEM) is introduced for solid particles in a viscous fluid. The method is verified in several simple test problems that are representative of aspects of particle suspension behavior. In all cases, we find the CDFEM to perform accurately and efficiently leading to the conclusion that it forms a prime candidate for application to the full direct numerical simulation of particle suspensions. © 2012 John Wiley & Sons, Ltd.

More Details

Pore-lining composition and capillary breakthrough pressure of mudstone caprocks : sealing efficiency at geologic CO2 storage sites

Dewers, Thomas; Kotula, Paul G.; Nemer, Martin

Subsurface containment of CO2 is predicated on effective caprock sealing. Many previous studies have relied on macroscopic measurements of capillary breakthrough pressure and other petrophysical properties without direct examination of solid phases that line pore networks and directly contact fluids. However, pore-lining phases strongly contribute to sealing behavior through interfacial interactions among CO2, brine, and the mineral or non-mineral phases. Our high resolution (i.e., sub-micron) examination of the composition of pore-lining phases of several continental and marine mudstones indicates that sealing efficiency (i.e., breakthrough pressure) is governed by pore shapes and pore-lining phases that are not identifiable except through direct characterization of pores. Bulk X-ray diffraction data does not indicate which phases line the pores and may be especially lacking for mudstones with organic material. Organics can line pores and may represent once-mobile phases that modify the wettability of an originally clay-lined pore network. For shallow formations (i.e., < {approx}800 m depth), interfacial tension and contact angles result in breakthrough pressures that may be as high as those needed to fracture the rock - thus, in the absence of fractures, capillary sealing efficiency is indicated. Deeper seals have poorer capillary sealing if mica-like wetting dominates the wettability. We thank the U.S. Department of Energy's National Energy Technology Laboratory and the Office of Basic Energy Sciences, and the Southeast and Southwest Carbon Sequestration Partnerships for supporting this work.

More Details

Mesoscale to plant-scale models of nuclear waste reprocessing

Rao, Rekha R.; Pawlowski, Roger; Brotherton, Christopher M.; Cipiti, Benjamin B.; Domino, Stefan P.; Jove-Colon, Carlos F.; Moffat, Harry K.; Nemer, Martin; Noble, David R.; O'Hern, Timothy J.

Imported oil exacerabates our trade deficit and funds anti-American regimes. Nuclear Energy (NE) is a demonstrated technology with high efficiency. NE's two biggest political detriments are possible accidents and nuclear waste disposal. For NE policy, proliferation is the biggest obstacle. Nuclear waste can be reduced through reprocessing, where fuel rods are separated into various streams, some of which can be reused in reactors. Current process developed in the 1950s is dirty and expensive, U/Pu separation is the most critical. Fuel rods are sheared and dissolved in acid to extract fissile material in a centrifugal contactor. Plants have many contacts in series with other separations. We have taken a science and simulation-based approach to develop a modern reprocessing plant. Models of reprocessing plants are needed to support nuclear materials accountancy, nonproliferation, plant design, and plant scale-up.

More Details
Results 51–100 of 105
Results 51–100 of 105