Temperature Effects on Compaction and Strength during Shock Compression of Porous Silica
Abstract not provided.
Abstract not provided.
This report describes the high-level accomplishments from the Plasma Science and Engineering Grand Challenge LDRD at Sandia National Laboratories. The Laboratory has a need to demonstrate predictive capabilities to model plasma phenomena in order to rapidly accelerate engineering development in several mission areas. The purpose of this Grand Challenge LDRD was to advance the fundamental models, methods, and algorithms along with supporting electrode science foundation to enable a revolutionary shift towards predictive plasma engineering design principles. This project integrated the SNL knowledge base in computer science, plasma physics, materials science, applied mathematics, and relevant application engineering to establish new cross-laboratory collaborations on these topics. As an initial exemplar, this project focused efforts on improving multi-scale modeling capabilities that are utilized to predict the electrical power delivery on large-scale pulsed power accelerators. Specifically, this LDRD was structured into three primary research thrusts that, when integrated, enable complex simulations of these devices: (1) the exploration of multi-scale models describing the desorption of contaminants from pulsed power electrodes, (2) the development of improved algorithms and code technologies to treat the multi-physics phenomena required to predict device performance, and (3) the creation of a rigorous verification and validation infrastructure to evaluate the codes and models across a range of challenge problems. These components were integrated into initial demonstrations of the largest simulations of multi-level vacuum power flow completed to-date, executed on the leading HPC computing machines available in the NNSA complex today. These preliminary studies indicate relevant pulsed power engineering design simulations can now be completed in (of order) several days, a significant improvement over pre-LDRD levels of performance.
AIP Conference Proceedings
Here, we describe recent efforts to improve our predictive modeling of rate-dependent behavior at, or near, a phase transition using molecular dynamics simulations. Cadmium sulfide (CdS) is a well-studied material that undergoes a solid-solid phase transition from wurtzite to rock salt structures between 3 and 9 GPa. Atomistic simulations are used to investigate the dominant transition mechanisms as a function of orientation, size and rate. We found that the final rock salt orientations were determined relative to the initial wurtzite orientation, and that these orientations were different for the two orientations and two pressure regimes studied. The CdS solid-solid phase transition is studied, for both a bulk single crystal and for polymer-encapsulated spherical nanoparticles of various sizes.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Journal of Physical Chemistry C
Pressure-driven assembly of ligand-grafted gold nanoparticle superlattices is a promising approach for fabricating gold nanostructures, such as nanowires and nanosheets. Optimizing this fabrication method will require extending our understanding of superlattice mechanics to regimes of high pressures. We use molecular dynamics simulations to characterize the response of alkanethiol-grafted gold nanoparticle superlattices to applied hydrostatic pressures up to 15 GPa. At low applied pressures, intrinsic voids govern the mechanics of compaction. As applied pressures increase, the void collapse and ligand compression depend significantly on the ligand length. These microstructural observations correlate directly with trends in bulk modulus and elastic constants. For short ligands, core-core contact between gold nanoparticles is observed at high pressures, which augurs irreversible response and eventual sintering. This presintering behavior was unexpected under hydrostatic loading and is observed only for the shortest ligands.
Abstract not provided.
Abstract not provided.
Scientific Reports
Deformation mechanisms in bcc metals, especially in dynamic regimes, show unusual complexity, which complicates their use in high-reliability applications. Here, we employ novel, high-velocity cylinder impact experiments to explore plastic anisotropy in single crystal specimens under high-rate loading. The bcc tantalum single crystals exhibit unusually high deformation localization and strong plastic anisotropy when compared to polycrystalline samples. Several impact orientations - [100], [110], [111] and [149] -Are characterized over a range of impact velocities to examine orientation-dependent mechanical behavior versus strain rate. Moreover, the anisotropy and localized plastic strain seen in the recovered cylinders exhibit strong axial symmetries which differed according to lattice orientation. Two-, three-, and four-fold symmetries are observed. We propose a simple crystallographic argument, based on the Schmid law, to understand the observed symmetries. These tests are the first to explore the role of single-crystal orientation in Taylor impact tests and they clearly demonstrate the importance of crystallography in high strain rate and temperature deformation regimes. These results provide critical data to allow dramatically improved high-rate crystal plasticity models and will spur renewed interest in the role of crystallography to deformation in dynamics regimes.
Pressure-driven assembly of ligand-grafted gold nanoparticle superlattices is a promising approach for fabricating gold nanostructures, such as nanowires and nanosheets. However, optimizing this fabrication method requires an understanding of the mechanics of their complex hierarchical assemblies at high pressures. We use molecular dynamics simulations to characterize the response of alkanethiol-grafted gold nanoparticle superlattices to applied hydrostatic pressures up to 15 GPa, and demonstrate that the internal mechanics significantly depend on ligand length. At low pressures, intrinsic voids govern the mechanics of pressure-induced compaction, and the dynamics of collapse of these voids under pressure depend significantly on ligand length. These microstructural observations correlate well with the observed trends in bulk modulus and elastic constants. For the shortest ligands at high pressures, coating failure leads to gold core-core contact, an augur of irreversible response and eventual sintering. This behavior was unexpected under hydrostatic loading, and was only observed for the shortest ligands.
Abstract not provided.
AIP Conference Proceedings
The shock response of porous amorphous silica was investigated using classical molecular dynamics, over a range of porosity ranging from fully dense (2.21 g/cc) down to 0.14 g/cc. We observed an enhanced densification in the Hugoniot response at initial porosities above 50%, and the effect increased with increasing porosity. In the lowest initial densities, after an initial compression response, the systems expanded with increased pressure. These results show good agreement with experiments. We explored mechanisms leading to enhanced densification which appear to differ from mechanisms observed in similar studies in silicon.
AIP Conference Proceedings
The shock response of porous amorphous silica was investigated using classical molecular dynamics, over a range of porosity ranging from fully dense (2.21 g/cc) down to 0.14 g/cc. We observed an enhanced densification in the Hugoniot response at initial porosities above 50%, and the effect increased with increasing porosity. In the lowest initial densities, after an initial compression response, the systems expanded with increased pressure. These results show good agreement with experiments. We explored mechanisms leading to enhanced densification which appear to differ from mechanisms observed in similar studies in silicon.
Physical Review Materials
Material strength and moduli can be determined from dynamic high-pressure ramp-release experiments using an indirect method of Lagrangian wave profile analysis of surface velocities. This method, termed self-consistent Lagrangian analysis (SCLA), has been difficult to calibrate and corroborate with other experimental methods. Using nonequilibrium molecular dynamics, we validate the SCLA technique by demonstrating that it accurately predicts the same bulk modulus, shear modulus, and strength as those calculated from the full stress tensor data, especially where strain rate induced relaxation effects and wave attenuation are small. We show here that introducing a hold in the loading profile at peak pressure gives improved accuracy in the shear moduli and relaxation-adjusted strength by reducing the effect of wave attenuation. When rate-dependent effects coupled with wave attenuation are large, we find that Lagrangian analysis overpredicts the maximum unload wavespeed, leading to increased error in the measured dynamic shear modulus. These simulations provide insight into the definition of dynamic strength, as well as a plausible explanation for experimental disagreement in reported dynamic strength values.
Abstract not provided.
Journal of Physical Chemistry A
Thermal degradation of polyethylene is studied under the extremely high rate temperature ramps expected in laser-driven and X-ray ablation experiments - from 1010 to 1014 K/s in isochoric, condensed phases. The molecular evolution and macroscopic state variables are extracted as a function of density from reactive molecular dynamics simulations using the ReaxFF potential. The enthalpy, dissociation onset temperature, bond evolution, and observed cross-linking are shown to be rate dependent. These results are used to parametrize a kinetic rate model for the decomposition and coalescence of hydrocarbons as a function of temperature, temperature ramp rate, and density. The results are contrasted to first-order random-scission macrokinetic models often assumed for pyrolysis of linear polyethylene under ambient conditions.
Physical Review B
Abstract not provided.
Abstract not provided.