Publications

Results 26–50 of 120

Search results

Jump to search filters

Scale and rate in CdS pressure-induced phase transition

AIP Conference Proceedings

Lane, James M.; Koski, Jason K.; Thompson, Aidan P.; Srivastava, Ishan S.; Grest, Gary S.; Ao, Tommy A.; Stoltzfus, Brian S.; Austin, Kevin N.; Fan, Hongyou F.; Morgan, Dane; Knudson, Marcus D.

Here, we describe recent efforts to improve our predictive modeling of rate-dependent behavior at, or near, a phase transition using molecular dynamics simulations. Cadmium sulfide (CdS) is a well-studied material that undergoes a solid-solid phase transition from wurtzite to rock salt structures between 3 and 9 GPa. Atomistic simulations are used to investigate the dominant transition mechanisms as a function of orientation, size and rate. We found that the final rock salt orientations were determined relative to the initial wurtzite orientation, and that these orientations were different for the two orientations and two pressure regimes studied. The CdS solid-solid phase transition is studied, for both a bulk single crystal and for polymer-encapsulated spherical nanoparticles of various sizes.

More Details

Mechanics of Gold Nanoparticle Superlattices at High Hydrostatic Pressures

Journal of Physical Chemistry C

Srivastava, Ishan S.; Peters, Brandon L.; Lane, James M.; Fan, Hongyou F.; Salerno, K.M.; Grest, Gary S.

Pressure-driven assembly of ligand-grafted gold nanoparticle superlattices is a promising approach for fabricating gold nanostructures, such as nanowires and nanosheets. Optimizing this fabrication method will require extending our understanding of superlattice mechanics to regimes of high pressures. We use molecular dynamics simulations to characterize the response of alkanethiol-grafted gold nanoparticle superlattices to applied hydrostatic pressures up to 15 GPa. At low applied pressures, intrinsic voids govern the mechanics of compaction. As applied pressures increase, the void collapse and ligand compression depend significantly on the ligand length. These microstructural observations correlate directly with trends in bulk modulus and elastic constants. For short ligands, core-core contact between gold nanoparticles is observed at high pressures, which augurs irreversible response and eventual sintering. This presintering behavior was unexpected under hydrostatic loading and is observed only for the shortest ligands.

More Details

Anisotropy and strain localization in dynamic impact experiments of tantalum single crystals

Scientific Reports

Lim, Hojun L.; Carroll, Jay D.; Battaile, Corbett C.; Chen, Shuh R.; Moore, Alexander M.; Lane, James M.

Deformation mechanisms in bcc metals, especially in dynamic regimes, show unusual complexity, which complicates their use in high-reliability applications. Here, we employ novel, high-velocity cylinder impact experiments to explore plastic anisotropy in single crystal specimens under high-rate loading. The bcc tantalum single crystals exhibit unusually high deformation localization and strong plastic anisotropy when compared to polycrystalline samples. Several impact orientations - [100], [110], [111] and [149] -Are characterized over a range of impact velocities to examine orientation-dependent mechanical behavior versus strain rate. Moreover, the anisotropy and localized plastic strain seen in the recovered cylinders exhibit strong axial symmetries which differed according to lattice orientation. Two-, three-, and four-fold symmetries are observed. We propose a simple crystallographic argument, based on the Schmid law, to understand the observed symmetries. These tests are the first to explore the role of single-crystal orientation in Taylor impact tests and they clearly demonstrate the importance of crystallography in high strain rate and temperature deformation regimes. These results provide critical data to allow dramatically improved high-rate crystal plasticity models and will spur renewed interest in the role of crystallography to deformation in dynamics regimes.

More Details

Mechanics of Gold Nanoparticle Superlattices at High Hydrostatic Pressure

Srivastava, Ishan; Peters, Brandon L.; Lane, James M.; Fan, Hongyou F.; Grest, Gary S.; Salerno, Michael K.

Pressure-driven assembly of ligand-grafted gold nanoparticle superlattices is a promising approach for fabricating gold nanostructures, such as nanowires and nanosheets. However, optimizing this fabrication method requires an understanding of the mechanics of their complex hierarchical assemblies at high pressures. We use molecular dynamics simulations to characterize the response of alkanethiol-grafted gold nanoparticle superlattices to applied hydrostatic pressures up to 15 GPa, and demonstrate that the internal mechanics significantly depend on ligand length. At low pressures, intrinsic voids govern the mechanics of pressure-induced compaction, and the dynamics of collapse of these voids under pressure depend significantly on ligand length. These microstructural observations correlate well with the observed trends in bulk modulus and elastic constants. For the shortest ligands at high pressures, coating failure leads to gold core-core contact, an augur of irreversible response and eventual sintering. This behavior was unexpected under hydrostatic loading, and was only observed for the shortest ligands.

More Details

Molecular dynamics study of shock compression in porous silica glass

AIP Conference Proceedings

Jones, Keith A.; Lane, James M.; Vogler, Tracy V.

The shock response of porous amorphous silica was investigated using classical molecular dynamics, over a range of porosity ranging from fully dense (2.21 g/cc) down to 0.14 g/cc. We observed an enhanced densification in the Hugoniot response at initial porosities above 50%, and the effect increased with increasing porosity. In the lowest initial densities, after an initial compression response, the systems expanded with increased pressure. These results show good agreement with experiments. We explored mechanisms leading to enhanced densification which appear to differ from mechanisms observed in similar studies in silicon.

More Details

Verification of experimental dynamic strength methods with atomistic ramp-release simulations

Physical Review Materials

Moore, Alexander M.; Brown, Justin L.; Lim, Hojun L.; Lane, James M.

Material strength and moduli can be determined from dynamic high-pressure ramp-release experiments using an indirect method of Lagrangian wave profile analysis of surface velocities. This method, termed self-consistent Lagrangian analysis (SCLA), has been difficult to calibrate and corroborate with other experimental methods. Using nonequilibrium molecular dynamics, we validate the SCLA technique by demonstrating that it accurately predicts the same bulk modulus, shear modulus, and strength as those calculated from the full stress tensor data, especially where strain rate induced relaxation effects and wave attenuation are small. We show here that introducing a hold in the loading profile at peak pressure gives improved accuracy in the shear moduli and relaxation-adjusted strength by reducing the effect of wave attenuation. When rate-dependent effects coupled with wave attenuation are large, we find that Lagrangian analysis overpredicts the maximum unload wavespeed, leading to increased error in the measured dynamic shear modulus. These simulations provide insight into the definition of dynamic strength, as well as a plausible explanation for experimental disagreement in reported dynamic strength values.

More Details

Molecular and Kinetic Models for High-Rate Thermal Degradation of Polyethylene

Journal of Physical Chemistry A

Lane, James M.; Moore, Nathan W.

Thermal degradation of polyethylene is studied under the extremely high rate temperature ramps expected in laser-driven and X-ray ablation experiments - from 1010 to 1014 K/s in isochoric, condensed phases. The molecular evolution and macroscopic state variables are extracted as a function of density from reactive molecular dynamics simulations using the ReaxFF potential. The enthalpy, dissociation onset temperature, bond evolution, and observed cross-linking are shown to be rate dependent. These results are used to parametrize a kinetic rate model for the decomposition and coalescence of hydrocarbons as a function of temperature, temperature ramp rate, and density. The results are contrasted to first-order random-scission macrokinetic models often assumed for pyrolysis of linear polyethylene under ambient conditions.

More Details

Shock compression of strongly correlated oxides: A liquid-regime equation of state for cerium(IV) oxide

Physical Review B

Weck, Philippe F.; Cochrane, Kyle C.; Root, Seth R.; Lane, James M.; Shulenburger, Luke N.; Carpenter, John H.; Mattsson, Thomas M.; Vogler, Tracy V.

The shock Hugoniot for full-density and porous CeO2 was investigated in the liquid regime using ab initio molecular dynamics (AIMD) simulations with Erpenbeck's approach based on the Rankine-Hugoniot jump conditions. The phase space was sampled by carrying out NVT simulations for isotherms between 6000 and 100 000 K and densities ranging from ρ=2.5 to 20g/cm3. The impact of on-site Coulomb interaction corrections +U on the equation of state (EOS) obtained from AIMD simulations was assessed by direct comparison with results from standard density functional theory simulations. Classical molecular dynamics (CMD) simulations were also performed to model atomic-scale shock compression of larger porous CeO2 models. Results from AIMD and CMD compression simulations compare favorably with Z-machine shock data to 525 GPa and gas-gun data to 109 GPa for porous CeO2 samples. Using results from AIMD simulations, an accurate liquid-regime Mie-Grüneisen EOS was built for CeO2. In addition, a revised multiphase SESAME-Type EOS was constrained using AIMD results and experimental data generated in this work. This study demonstrates the necessity of acquiring data in the porous regime to increase the reliability of existing analytical EOS models.

More Details
Results 26–50 of 120
Results 26–50 of 120