Publications

Results 1–25 of 221

Search results

Jump to search filters

An Assessment of the Laminar Hypersonic Double-Cone Experiments in the LENS-XX Tunnel

AIAA Journal

Ray, Jaideep R.; Blonigan, Patrick J.; Phipps, Eric T.; Maupin, Kathryn A.

This is an investigation on two experimental datasets of laminar hypersonic flows, over a double-cone geometry, acquired in Calspan—University at Buffalo Research Center’s Large Energy National Shock (LENS)-XX expansion tunnel. These datasets have yet to be modeled accurately. A previous paper suggested that this could partly be due to mis-specified inlet conditions. The authors of this paper solved a Bayesian inverse problem to infer the inlet conditions of the LENS-XX test section and found that in one case they lay outside the uncertainty bounds specified in the experimental dataset. However, the inference was performed using approximate surrogate models. In this paper, the experimental datasets are revisited and inversions for the tunnel test-section inlet conditions are performed with a Navier–Stokes simulator. The inversion is deterministic and can provide uncertainty bounds on the inlet conditions under a Gaussian assumption. It was found that deterministic inversion yields inlet conditions that do not agree with what was stated in the experiments. An a posteriori method is also presented to check the validity of the Gaussian assumption for the posterior distribution. This paper contributes to ongoing work on the assessment of datasets from challenging experiments conducted in extreme environments, where the experimental apparatus is pushed to the margins of its design and performance envelopes.

More Details

Calibrating hypersonic turbulence flow models with the HIFiRE-1 experiment using data-driven machine-learned models

Computer Methods in Applied Mechanics and Engineering

Chowdhary, Kamaljit S.; Hoang, Chi K.; Ray, Jaideep R.; Lee, Kookjin

In this paper we study the efficacy of combining machine-learning methods with projection-based model reduction techniques for creating data-driven surrogate models of computationally expensive, high-fidelity physics models. Such surrogate models are essential for many-query applications e.g., engineering design optimization and parameter estimation, where it is necessary to invoke the high-fidelity model sequentially, many times. Surrogate models are usually constructed for individual scalar quantities. However there are scenarios where a spatially varying field needs to be modeled as a function of the model's input parameters. We develop a method to do so, using projections to represent spatial variability while a machine-learned model captures the dependence of the model's response on the inputs. The method is demonstrated on modeling the heat flux and pressure on the surface of the HIFiRE-1 geometry in a Mach 7.16 turbulent flow. The surrogate model is then used to perform Bayesian estimation of freestream conditions and parameters of the SST (Shear Stress Transport) turbulence model embedded in the high-fidelity (Reynolds-Averaged Navier–Stokes) flow simulator, using shock-tunnel data. The paper provides the first-ever Bayesian calibration of a turbulence model for complex hypersonic turbulent flows. We find that the primary issues in estimating the SST model parameters are the limited information content of the heat flux and pressure measurements and the large model-form error encountered in a certain part of the flow.

More Details

Detecting technological maturity from bibliometric patterns

Expert Systems with Applications

Cauthen, Katherine R.; Rai, Prashant; Hale, Nicholas; Freeman, Laura; Ray, Jaideep R.

The capability to identify emergent technologies based upon easily accessed open-source indicators, such as publications, is important for decision-makers in industry and government. The scientific contribution of this work is the proposition of a machine learning approach to the detection of the maturity of emerging technologies based on publication counts. Time-series of publication counts have universal features that distinguish emerging and growing technologies. We train an artificial neural network classifier, a supervised machine learning algorithm, upon these features to predict the maturity (emergent vs. growth) of an arbitrary technology. With a training set comprised of 22 technologies we obtain a classification accuracy ranging from 58.3% to 100% with an average accuracy of 84.6% for six test technologies. To enhance classifier performance, we augmented the training corpus with synthetic time-series technology life cycle curves, formed by calculating weighted averages of curves in the original training set. Training the classifier on the synthetic data set resulted in improved accuracy, ranging from 83.3% to 100% with an average accuracy of 90.4% for the test technologies. The performance of our classifier exceeds that of competing machine learning approaches in the literature, which report an average classification accuracy of only 85.7% at maximum. Moreover, in contrast to current methods our approach does not require subject matter expertise to generate training labels, and it can be automated and scaled.

More Details

Validation of Calibrated k–ε Model Parameters for Jet-in-Crossflow

AIAA Journal

Miller, Nathan M.; Beresh, Steven J.; Ray, Jaideep R.

Previous efforts determined a set of calibrated, optimal model parameter values for Reynolds-averaged Navier–Stokes (RANS) simulations of a compressible jet in crossflow (JIC) using a $k–ε$ turbulence model. These parameters were derived by comparing simulation results to particle image velocimetry (PIV) data of a complementary JIC experiment under a limited set of flow conditions. Here, a $k–ε$ model using both nominal and calibrated parameters is validated against PIV data acquired from a much wider variety of JIC cases, including a realistic flight vehicle. The results from the simulations using the calibrated model parameters showed considerable improvements over those using the nominal values, even for cases that were not used in the calibration procedure that defined the optimal parameters. This improvement is demonstrated using a number of quality metrics that test the spatial alignment of the jet core, the magnitudes of multiple flow variables, and the location and strengths of vortices in the counter-rotating vortex cores on the PIV planes. These results suggest that the calibrated parameters have applicability well outside the specific flow case used in defining them and that with the right model parameters, RANS solutions for the JIC can be improved significantly over those obtained from the nominal model.

More Details

Qualifying Training Datasets for Data-Driven Turbulence Closures

AIAA AVIATION 2022 Forum

Banerjee, Tania; Ray, Jaideep R.; Barone, Matthew F.; Domino, Stefan P.

We develop methods that could be used to qualify a training dataset and a data-driven turbulence closure trained on it. By qualify, we mean identify the kind of turbulent physics that could be simulated by the data-driven closure. We limit ourselves to closures for the Reynolds-Averaged Navier Stokes (RANS) equations. We build on our previous work on assembling feature-spaces, clustering and characterizing Direct Numerical Simulation datasets that are typically pooled to constitute training datasets. In this paper, we develop an alternative way to assemble feature-spaces and thus check the correctness and completeness of our previous method. We then use the characterization of our training dataset to identify if a data-driven turbulence closure learned on it would generalize to an unseen flow configuration – an impinging jet in our case. Finally, we train a RANS closure architected as a neural network, and develop an explanation i.e., an interpretable approximation, using generalized linear mixed-effects models and check whether the explanation resembles a contemporary closure from turbulence modeling.

More Details

Forecasting Multi-Wave Epidemics Through Bayesian Inference

Archives of Computational Methods in Engineering

Safta, Cosmin S.; Ray, Jaideep R.; Blonigan, Patrick J.

We present a simple, near-real-time Bayesian method to infer and forecast a multiwave outbreak, and demonstrate it on the COVID-19 pandemic. The approach uses timely epidemiological data that has been widely available for COVID-19. It provides short-term forecasts of the outbreak’s evolution, which can then be used for medical resource planning. The method postulates one- and multiwave infection models, which are convolved with the incubation-period distribution to yield competing disease models. The disease models’ parameters are estimated via Markov chain Monte Carlo sampling and information-theoretic criteria are used to select between them for use in forecasting. The method is demonstrated on two- and three-wave COVID-19 outbreaks in California, New Mexico and Florida, as observed during Summer-Winter 2020. We find that the method is robust to noise, provides useful forecasts (along with uncertainty bounds) and that it reliably detected when the initial single-wave COVID-19 outbreaks transformed into successive surges as containment efforts in these states failed by the end of Spring 2020.

More Details

Verification of Data-Driven Models of Physical Phenomena using Interpretable Approximation

Ray, Jaideep R.; Barone, Matthew F.; Domino, Stefan P.; Banerjee, Tania; Ranka, Sanjay

Machine-learned models, specifically neural networks, are increasingly used as “closures” or “constitutive models” in engineering simulators to represent fine-scale physical phenomena that are too computationally expensive to resolve explicitly. However, these neural net models of unresolved physical phenomena tend to fail unpredictably and are therefore not used in mission-critical simulations. In this report, we describe new methods to authenticate them, i.e., to determine the (physical) information content of their training datasets, qualify the scenarios where they may be used and to verify that the neural net, as trained, adhere to physics theory. We demonstrate these methods with neural net closure of turbulent phenomena used in Reynolds Averaged Navier-Stokes equations. We show the types of turbulent physics extant in our training datasets, and, using a test flow of an impinging jet, identify the exact locations where the neural network would be extrapolating i.e., where it would be used outside the feature-space where it was trained. Using Generalized Linear Mixed Models, we also generate explanations of the neural net (à la Local Interpretable Model agnostic Explanations) at prototypes placed in the training data and compare them with approximate analytical models from turbulence theory. Finally, we verify our findings by reproducing them using two different methods.

More Details
Results 1–25 of 221
Results 1–25 of 221